OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 2029–2037

Nonparaxial propagation of spirally polarized optical beams

Riccardo Borghi and Massimo Santarsiero  »View Author Affiliations

JOSA A, Vol. 21, Issue 10, pp. 2029-2037 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The free-propagation features of light beams whose transverse electric field lines are logarithmic spirals (namely, spirally polarized beams) are investigated in both the paraxial and the nonparaxial regime. The complete propagated electric field is considered, and some general properties are obtained regardless of the specific transverse distribution. Simple and significant analytical results are obtained when the transverse intensity profile is chosen as that pertinent to an axially symmetric Laguerre–Gaussian beam of order 1 (namely, spirally polarized donut beams). In particular, it is found that for such beams, the propagated longitudinal electric field can be expressed as a simple superposition of elegant Laguerre–Gaussian beams. Numerical results are presented for different values of the beam parameters and are compared with recently obtained experimental results.

© 2004 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

Original Manuscript: February 27, 2004
Revised Manuscript: May 18, 2004
Manuscript Accepted: May 18, 2004
Published: October 1, 2004

Riccardo Borghi and Massimo Santarsiero, "Nonparaxial propagation of spirally polarized optical beams," J. Opt. Soc. Am. A 21, 2029-2037 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  2. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993). [CrossRef] [PubMed]
  3. R. H. Jordan, G. D. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]
  4. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  5. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998). [CrossRef]
  6. D. P. Biss, T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001). [CrossRef] [PubMed]
  7. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  8. M. Neil, F. Massoumian, R. Juskaitis, T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002). [CrossRef]
  9. T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002). [CrossRef]
  10. I. Moshe, S. Jackel, A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003). [CrossRef] [PubMed]
  11. D. J. Armstrong, M. C. Phillips, A. V. Smith, “Generation of radially polarized beams with an image-rotating resonator,” Appl. Opt. 42, 3550–3554 (2003). [CrossRef] [PubMed]
  12. J. Weeber, E. Bourillot, A. Dereux, J. Goudonnet, Y. Chen, C. Girard, “Observation of light confinement effects with a near-field optical microscope,” Phys. Rev. Lett. 77, 5332–5335 (1996). [CrossRef] [PubMed]
  13. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  14. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 2339011–2339014 (2003). [CrossRef]
  15. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, A. S. van de Nes, “Extended Nijboer–Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. A 20, 2281–2292 (2003). [CrossRef]
  16. R. Dorn, S. Quabis, G. Leuchs, “The focus of light. Linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).
  17. L. Allen, M. J. Padgett, M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, Vol. XXXIX, E. Wolf, ed. (Elsevier, Amsterdam, 1999), pp. 291–372.
  18. F. Gori, “Polarization basis for vortex beams,” J. Opt. Soc. Am. A 18, 1612–1617 (2001). [CrossRef]
  19. H. Ostenberg, L. W. Smith, “Closed solutions of Rayleigh diffraction integral for axial points,” J. Opt. Soc. Am. 51, 1050–1054 (1961). [CrossRef]
  20. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001). [CrossRef]
  21. A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun. 202, 17–20 (2002). [CrossRef]
  22. R. Borghi, A. Ciattoni, M. Santarsiero, “Axial amplitude of nonparaxial Gaussian beams,” J. Opt. Soc. Am. A 19, 1207–1211 (2002). [CrossRef]
  23. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966).
  24. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  25. A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992). [CrossRef]
  26. S. R. Seshadri, “Nonparaxial corrections for the fundamental Gaussian beam,” J. Opt. Soc. Am. A 19, 2134–2141 (2002). [CrossRef]
  27. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian–Maxwell beams,” J. Opt. Soc. Am. A 3, 536–540 (1986). [CrossRef]
  28. The following identity has been used: ∫02πdψ sin ψ exp[ik(r2+r′2-2rr′cos ψ+z2)1/2](r2+r′2-2rr′cos ψ+z2)1/2=0.
  29. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  30. E. Zauderer, “Complex argument Hermite–Gaussian and Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 3, 465–469 (1986). [CrossRef]
  31. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
  32. H. Laabs, “Propagation of Hermite–Gaussian beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited