OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 2135–2145

Fast method for physical optics propagation of high-numerical-aperture beams

Yaakov M. Engelberg and Shlomo Ruschin  »View Author Affiliations

JOSA A, Vol. 21, Issue 11, pp. 2135-2145 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is presented that expands the scheme of physical optics propagation beyond the Fresnel approximation to include beams that are nonparaxial. The formalism retains most of the calculation advantages of the Fresnel approach; i.e., it is based on a single Fourier transform step. The kernel of the new transformation is no longer separable in Cartesian coordinates; thus the formalism can account for astigmatic coupling effects originating purely from diffraction. The validity limits of the proposed algorithm are explored. Analytical expressions, numerical simulation results, and experimental data are compared.

© 2004 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.2590) Fourier optics and signal processing : ABCD transforms

Original Manuscript: December 17, 2003
Revised Manuscript: April 29, 2004
Manuscript Accepted: April 29, 2004
Published: November 1, 2004

Yaakov M. Engelberg and Shlomo Ruschin, "Fast method for physical optics propagation of high-numerical-aperture beams," J. Opt. Soc. Am. A 21, 2135-2145 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, I. Oishi, “Efficient coupling between laser diodes with a highly elliptic field and single-mode fibers by means of GIO fibers,” IEEE Photonics Technol. Lett. 13, 1191–1193 (2001). [CrossRef]
  2. M. J. Landry, J. W. Rupert, A. Mittas, “Coupling of high power laser diode optical power,” Appl. Opt. 30, 2514–2525 (1991). [CrossRef] [PubMed]
  3. E. Shekel, A. Fiengold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaeli, M. Rudman, G. Tidhar, J. Vecht, S. Ruschin, “64×64fast optical switching module,” in Optical Fiber Communication Conference, Vol. 1 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 27–29.
  4. Y. M. Engelberg, S. Ruschin, “Coma aberration in diffraction from a narrow slit,” in Optical Modeling and Performance Predictions, M. A. Kahan, ed., Proc. SPIE5178, 112–123 (2003). [CrossRef]
  5. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering Series, R. R. Shanon, J. C. Wyant, eds. (Academic, San Diego, Calif., 1992), Vol. XI, pp. 125–200.
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  7. Zemax User’s Manual, http://www.zemax.com/updates/index.html ; download file: ZEMAX̲Manual̲2003-02-04.exe.
  8. A. M. Steane, H. N. Rutt, “Diffraction calculations in the near field and the validity of the Fresnel approximation,” J. Opt. Soc. Am. A 6, 1809–1814 (1989). [CrossRef]
  9. C. J. R. Sheppard, M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresnel diffraction theory,” J. Opt. Soc. Am. A 9, 274–281 (1992). [CrossRef]
  10. G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983). [CrossRef]
  11. M. A. Alonso, A. A. Asatryan, G. W. Forbes, “Beyond the Fresnel approximation for focused waves,” J. Opt. Soc. Am. A 16, 1958–1969 (1999). [CrossRef]
  12. G. W. Forbes, D. J. Butler, R. L. Gordon, A. A. Asatryan, “Algebraic corrections for paraxial wave fields,” J. Opt. Soc. Am. A 14, 3300–3315 (1997). [CrossRef]
  13. W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71, 7–14 (1981). [CrossRef]
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  15. X. Zeng, C. Liang, Y. An, “Far-field radiation of planar Gaussian sources and comparison with solutions based on the parabolic approximation,” Appl. Opt. 36, 2042–2047 (1997). [CrossRef] [PubMed]
  16. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1974).
  17. G. W. Forbes, “Validity of the Fresnel approximation in the diffraction of collimated beams,” J. Opt. Soc. Am. A 13, 1816–1826 (1996). [CrossRef]
  18. L. Frank, “The properties of the Sommerfeld diffraction integral for a large aperture converging beam,” Optik (Stuttgart) 43, 149–157 (1975).
  19. J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986).
  20. P. Varga, P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998). [CrossRef]
  21. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited