OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 2196–2204

Explicit analysis of anisotropic planar waveguides by the analytical transfer-matrix method

Weijun Liao, Xianfeng Chen, Yuping Chen, Yuxing Xia, and Yingli Chen  »View Author Affiliations

JOSA A, Vol. 21, Issue 11, pp. 2196-2204 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation properties of light in anisotropic optical planar waveguides with different index distributions are investigated with the analytical transfer-matrix method. Dispersion equations are analytically deduced by the method in terms of different index profiles. It is shown by examples that this method exhibits good accuracy compared with numerical methods while still holding physical insight.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7390) Optical devices : Waveguides, planar
(260.1180) Physical optics : Crystal optics
(290.3030) Scattering : Index measurements
(350.5500) Other areas of optics : Propagation

Original Manuscript: April 23, 2004
Revised Manuscript: May 20, 2004
Manuscript Accepted: May 20, 2004
Published: November 1, 2004

Weijun Liao, Xianfeng Chen, Yuping Chen, Yuxing Xia, and Yingli Chen, "Explicit analysis of anisotropic planar waveguides by the analytical transfer-matrix method," J. Opt. Soc. Am. A 21, 2196-2204 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. P. Gia Russo, J. H. Harris, “Wave propagation in anisotropic thin film optical waveguides,” J. Opt. Soc. Am. 63, 138–145 (1973). [CrossRef]
  2. J. Ctyroky, M. Cada, “Generalized WKB method for the analysis of light propagation in inhomogeneous anisotropic optical waveguides,” IEEE J. Quantum Electron. QE-17, 1064–1070 (1981). [CrossRef]
  3. P. Yeh, “Optics of anisotropic layered media: a new 4×4 matrix algebra,” Surf. Sci. 96, 41–53 (1980). [CrossRef]
  4. S. Visnovsky, “Magnetic-optic effects in ultrathin structures at longitudinal and polar magnetizations,” Czech. J. Phys. 48, 1083–1104 (1998). [CrossRef]
  5. E. A. Kolosovsky, D. V. Petrov, A. V. Tsarev, I. B. Yakovkin, “An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguides,” Opt. Commun. 43, 21–25 (1982). [CrossRef]
  6. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985). [CrossRef]
  7. L. Tsang, S. L. Chuang, “Improved coupled-mode theory for reciprocal anisotropic waveguide,” J. Lightwave Technol. 6, 304–311 (1988). [CrossRef]
  8. G. Tartarini, P. Bassi, S. F. Chen, M. P. De Micheli, D. B. Ostrowsky, “Calculation of hybrid modes in uniaxial planar optical waveguides: application to proton exchanged lithium niobate waveguides,” Opt. Commun. 101, 424–431 (1993). [CrossRef]
  9. L. Nuno, J. V. Balbastre, H. Castane, “Analysis of general lossy inhomogeneous and anisotropic waveguides by the finite-element method (FEM) using edge elements,” IEEE Trans. Microwave Theory Tech. 45, 446–449 (1997). [CrossRef]
  10. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001). [CrossRef]
  11. I. Bardi, O. Biro, “An efficient finite-element formulation without spurious modes for anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 39, 1133–1139 (1991). [CrossRef]
  12. M. Koshiba, K. Hayata, M. Suzuki, “Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems,” IEEE Trans. Microwave Theory Tech. MTT-33, 900–905 (1985). [CrossRef]
  13. V. Schulz, “Adjoint high-order vectorial finite elements for nonsymmetric transversally anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 51, 1086–1095 (2003). [CrossRef]
  14. S. G. Garcia, T. M. Hung-Bao, R. G. Martin, B. G. Olmedo, “On the application of finite methods in time domain to anisotropic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 2195–2206 (1996). [CrossRef]
  15. P. A. Koukoutsaki, I. G. Tigelis, A. B. Manenkov, “Guided-mode analysis by the Lanczos–Fourier expansion,” J. Opt. Soc. Am. A 19, 2293–2300 (2002). [CrossRef]
  16. H. P. Uranus, H. J. W. M. Hoekstra, E. Vangroesen, “Finite difference scheme for planar waveguides with arbitrary index profiles and its implementation for anisotropic waveguides with a diagonal permittivity tensor,” Opt. Quantum Electron. 35, 407–427 (2003). [CrossRef]
  17. S. Gaal, “Surface integral method to determine guided modes in uniaxially anisotropic embedded waveguides,” Opt. Quantum Electron. 31, 763–780 (1999). [CrossRef]
  18. L. Zhan, Z. Cao, “Exact dispersion equation of a graded refractive-index optical waveguide based on the equivalent attenuated vector,” J. Opt. Soc. Am. A 15, 713–716 (1998). [CrossRef]
  19. Z. Cao, Y. Jiang, Q. S. Shen, X. M. Dou, Y. L. Chen, “Exact analytical method for planar optical waveguides with arbitrary index profile,” J. Opt. Soc. Am. A 16, 2209–2212 (1999). [CrossRef]
  20. Z. Cao, Q. Liu, Q. S. Shen, X. M. Dou, Y. L. Chen, “Quantization scheme for arbitrary one-dimensional potential wells,” Phys. Rev. A 63, 054103 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited