OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 2205–2215

Theory of partially coherent electromagnetic fields in the space–frequency domain

Jani Tervo, Tero Setälä, and Ari T. Friberg  »View Author Affiliations

JOSA A, Vol. 21, Issue 11, pp. 2205-2215 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We construct the coherent-mode representation for fluctuating, statistically stationary electromagnetic fields. The modes are shown to be spatially fully coherent in the sense of a recently introduced spectral degree of electromagnetic coherence. We also prove that the electric cross-spectral density tensor can be rigorously expressed as a correlation tensor averaged over an appropriate ensemble of strictly monochromatic vectorial wave functions. The formalism is demonstrated for partially polarized, partially coherent Gaussian Schell-model beams, but the theory applies to arbitrary random electromagnetic fields and can find applications in radiation and propagation and in inverse problems.

© 2004 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

Original Manuscript: February 24, 2004
Revised Manuscript: June 7, 2004
Manuscript Accepted: June 7, 2004
Published: November 1, 2004

Jani Tervo, Tero Setälä, and Ari T. Friberg, "Theory of partially coherent electromagnetic fields in the space–frequency domain," J. Opt. Soc. Am. A 21, 2205-2215 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  2. E. Wolf, “New spectral representation of random sources and the partially coherent fields they generate,” Opt. Commun. 38, 3–6 (1981). [CrossRef]
  3. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  4. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part II: steady-state fields and higher-order correlations,” J. Opt. Soc. Am. A 3, 76–85 (1986). [CrossRef]
  5. G. S. Agarwal, E. Wolf, “Higher-order coherence functions in the space–frequency domain,” J. Mod. Opt. 40, 1489–1496 (1993). [CrossRef]
  6. F. Gori, “Collet–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  7. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  8. F. Gori, “Mode propagation of the field generated by Collett–Wolf Schell-model sources,” Opt. Commun. 46, 149–154 (1983). [CrossRef]
  9. E. Wolf, “Coherent-mode propagation in spatially band-limited wave fields,” J. Opt. Soc. Am. A 3, 1920–1924 (1984). [CrossRef]
  10. K. Kim, D.-Y. Park, “Approximate method in coherent-mode representation,” Opt. Lett. 17, 1043–1045 (1992). [CrossRef] [PubMed]
  11. R. Simon, K. Sundar, N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993). [CrossRef]
  12. K. Sundar, N. Mukunda, R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995). [CrossRef]
  13. C. Palma, R. Borghi, G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996). [CrossRef]
  14. R. Borghi, M. Santarsiero, “Modal structure analysis for a class of axially symmetric flat-topped laser beams,” IEEE J. Quantum Electron. 35, 745–750 (1999). [CrossRef]
  15. T. Shirai, A. Dogariu, E. Wolf, “Mode analysis of spreading partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20, 1094–1102 (2003). [CrossRef]
  16. J. Huttunen, A. T. Friberg, J. Turunen, “Scattering of partially coherent electromagnetic fields by microstructured media,” Phys. Rev. E 52, 3081–3092 (1995). [CrossRef]
  17. P. Vahimaa, J. Turunen, “Bragg diffraction of spatially partially coherent fields,” J. Opt. Soc. Am. A 14, 54–59 (1997). [CrossRef]
  18. J. Turunen, E. Tervonen, A. T. Friberg, “Coherence theoretic algorithm to determine the transverse-mode structure of lasers,” Opt. Lett. 14, 627–629 (1989). [CrossRef] [PubMed]
  19. B. Lü, B. Zhang, B. Cai, C. Yang, “A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams behaving like Gaussian Schell-model beams,” Opt. Commun. 101, 49–52 (1993). [CrossRef]
  20. T. Habashy, A. T. Friberg, E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997). [CrossRef]
  21. M. Santarsiero, F. Gori, R. Borghi, G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite–Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999). [CrossRef]
  22. A number of recent papers consider beams in which the field consists of orthogonal, partially correlated transverse modes. The cross-spectral density then has, besides the “diagonal” elements, nonzero “off-diagonal” elements, and hence the represention is not the coherent-mode decomposition.
  23. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  24. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).
  25. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, London, UK, 2003).
  26. E. Collett, Polarized Light in Fiber Optics (PolaWave Group, Lincroft, N.J., 2003).
  27. T. Setälä, M. Kaivola, A. T. Friberg, “Degree of polarization in near fields of thermal sources: effects of surface waves,” Phys. Rev. Lett. 88, 123902 (2002). [CrossRef] [PubMed]
  28. T. Setälä, A. Shevchenko, M. Kaivola, A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  29. J. Tervo, T. Setälä, A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef] [PubMed]
  30. T. Setälä, J. Tervo, A. T. Friberg, “Complete electromagnetic coherence in the space–frequency domain,” Opt. Lett. 29, 328–330 (2004). [CrossRef]
  31. T. Setälä, J. Tervo, A. T. Friberg, “Theorems on complete electromagnetic coherence in the space–time domain,” Opt. Commun. 238, 229–236 (2004). [CrossRef]
  32. C. L. Mehta, E. Wolf, A. P. Balachandran, “Some theorems on the unimodular complex degree of optical coherence,” J. Math. Phys. 7, 133–138 (1966). [CrossRef]
  33. In Refs. 2and 3, Wolf actually examined the properties of statistically stationary random sources rather than fields, but the results are naturally applicable also to the field-domain analysis.
  34. L. Mandel, E. Wolf, “Complete coherence in the space–frequency domain,” Opt. Commun. 36, 247–249 (1981). [CrossRef]
  35. E. Wolf, “Completeness of coherent-mode eigenfunctions of Schell-model sources,” Opt. Lett. 9, 387–389 (1984). [CrossRef] [PubMed]
  36. P. Roman, E. Wolf, “Correlation theory of stationary electromagnetic fields. Part I—The basic field equations,” Nuovo Cimento 17, 462–476 (1960). [CrossRef]
  37. P. Roman, E. Wolf, “Correlation theory of stationary electromagnetic fields. Part II—Conservation laws,” Nuovo Cimento 17, 477–490 (1960). [CrossRef]
  38. For notational simplicity we sometimes represent the electric correlation tensors by the corresponding matrices.
  39. C. L. Mehta, E. Wolf, “Correlation theory of quantized electromagnetic fields. II. Stationary fields and their spectral properties,” Phys. Rev. 157, 1188–1197 (1967). [CrossRef]
  40. This may be seen at once similar to the scalar case of Ref. 3, i.e., by examining the properties of the Schwartz inequality.
  41. G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers (Dover, New York, 2000), Sec. 13.2.
  42. E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton U. Press, Princeton, N.J., 1975), p. 16.
  43. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists (Academic, San Diego, Calif., 2001).
  44. E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s Series (Dover, New York, 1957), Vol. 2, p. 326.
  45. J. L. Lumley, Stochastic Tools in Turbulence (Academic, New York, 1970).
  46. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
  47. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari, “Beam coherence-polarization matrix,” J. Opt. A, Pure Appl. Opt. 7, 941–951 (1998). [CrossRef]
  48. An alternative definition for the degree of electromagnetic coherence in the space–time domain, based on the visibility of interference fringes in Young’s double-slit experiment, was introduced in 1963 by Karczewski.49,50Several consequences of such a definition have been discussed.29A space–frequency analog of this degree of electromagnetic coherence was later employed in radiation analysis,51,52and in 2003 it was formalized by Wolf for electromagnetic beams in the two-slit interference geometry.53
  49. B. Karczewski, “Degree of coherence of the electromagnetic field,” Phys. Lett. 5, 191–192 (1963). [CrossRef]
  50. B. Karczewski, “Coherence theory of the electromagnetic field,” Nuovo Cimento 30, 906–915 (1963). [CrossRef]
  51. W. H. Carter, E. Wolf, “Far-zone behavior of electromagnetic fields generated by fluctuating current distributions,” Phys. Rev. A 36, 1258–1269 (1987). [CrossRef] [PubMed]
  52. T. Setälä, K. Blomstedt, M. Kaivola, A. T. Friberg, “Universality of electromagnetic-field correlations within homogeneous and isotropic sources,” Phys. Rev. E 67, 026613 (2003). [CrossRef]
  53. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
  54. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 484.
  55. P. Holmes, J. L. Lumley, C. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge U. Press, Cambridge, UK, 1996), Chap. 3.
  56. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  57. P. Vahimaa, J. Tervo, “Unified measures for optical fields: degree of polarization and effective degree of coherence,” J. Opt. A Pure Appl. Opt. 6, S41–S44 (2004). [CrossRef]
  58. M. J. Bastiaans, “New class of uncertainty relations for partially coherent light,” J. Opt. Soc. Am. A 1, 711–715 (1984). [CrossRef]
  59. L. Mandel, “Intensity fluctuations of partially polarized light,” Proc. Phys. Soc. London 81, 1104–1114 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited