OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2292–2300

Estimation of the degree of polarization in active coherent imagery by using the natural representation

Philippe Réfrégier, François Goudail, and Nicolas Roux  »View Author Affiliations


JOSA A, Vol. 21, Issue 12, pp. 2292-2300 (2004)
http://dx.doi.org/10.1364/JOSAA.21.002292


View Full Text Article

Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of degree of polarization estimation in polarization diversity images. We consider active imaging techniques with laser illumination, which have the appealing feature of revealing contrasts that do not appear in conventional intensity images. These techniques provide two images of the same scene that are perturbed with speckle noise. Because of the presence of nonhomogeneity in the reflected intensity, it can be preferable to perform image analysis of the orthogonal-state contrast image, which is a measure of the degree of polarization of the reflected light when the coherency matrix is diagonal. It has been shown that a simple nonlinear transformation of this orthogonal-state contrast image leads to an image perturbed with additive symmetrical noise on which simple and efficient estimation and detection techniques can be applied. We propose to precisely analyze estimation properties of the degree of polarization using this natural representation. In particular, we determine the Cramer–Rao bound of the polarization degree estimation and the variance of the proposed estimator, and we study the estimator’s efficiency as a function of the speckle order for different measurement strategies.

© 2004 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6600) Coherence and statistical optics : Statistical optics
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

Citation
Philippe Réfrégier, François Goudail, and Nicolas Roux, "Estimation of the degree of polarization in active coherent imagery by using the natural representation," J. Opt. Soc. Am. A 21, 2292-2300 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-12-2292


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. B. Holmes, “Applications of lasers to imaging of distant objects,” in Intense Laser beams and Applications, W. E. McDermott, ed., Proc. SPIE 1871, 306–315 (1993).
  2. G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc. IEEE 84, 103–125 (1996).
  3. D. G. Laurin, J. A. Beraldin, F. Blais, M. Rioux, and L. Cournoyer, “Three-dimensional tracking and imaging laser scanner for space operations,” in Laser Radar Technology and Applications, G. W. Kamerman and Ch. Werner, eds., Proc. SPIE 3707, 278–289 (1999).
  4. R. C. Hardie, M. Vadyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. (Bellingham) 37, 752–762 (1998).
  5. B. Johnson, R. Joseph, M. L. Nischan, A. Newbury, J. P. Kerekes, H. T. Barclay, B. C. Willard, and J. J. Zayhowski, “Compact active hyperspectral imaging system for the detection of concealed targets,” in Detection and Remediation Technologies for Mines and Minelike Targets IV, A. C. Dubey, J. F. Harvey, J. T. Broach, and R. E. Dugan, eds., Proc. SPIE 3710, 144–153 (1999).
  6. W. G. Egan, W. R. Johnson, and V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30, 435–442 (1991).
  7. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. (Bellingham) 34, 1558–1568 (1995).
  8. R. A. Chipman, “Polarization diversity active imaging,” in Image Reconstruction and Restoration II, T. J. Schulz, ed., Proc. SPIE 3170, 68–73 (1997).
  9. S. Breugnot and Ph. Clémenceau, “Modeling and performances of a polarization active imager at lambda=806 nm,” in Laser Radar Technology and Applications IV, G. W. Kamerman and Ch. Werner, eds., Proc. SPIE 3707, 449–460 (1999).
  10. J. W. Goodman, “Laser speckle and related phenomena,” in Statistical Properties of Laser Speckle Patterns, Vol. 9 of Topics in Applied Physics (Springer-Verlag, Heidelberg, Germany, 1975), pp. 9–75.
  11. F. Goudail and Ph. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644–646 (2001).
  12. F. Goudail and Ph. Réfrégier, “Statistical algorithms for target detection in coherent active polarimetric images,” J. Opt. Soc. Am. A 18, 3049–3060 (2001).
  13. F. Goudail and Ph. Réfrégier, “Target segmentation in active polarimetric images by use of statistical active contours,” Appl. Opt. 41, 874–883 (2002).
  14. F. Goudail and Ph. Réfrégier, “Improving target detection in active polarimetric images,” in Optical Pattern Recognition XII, T. H. Chao and D. P. Casasent, eds., Proc. SPIE 4387, 140–151 (2001).
  15. T. S. Ferguson, “Exponential families of distributions,” in Mathematical Statistics: A Decision Theoretic Approach (Academic, New York, 1967), pp. 125–132.
  16. S. Huard, “Polarized optical wave,” in Polarization of Light (Wiley, Paris, 1997), pp. 1–35.
  17. P. Clémenceau, S. Breugnot, and L. Collot, “Polarization diversity imaging,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE 3380, 284–291 (1998).
  18. J. W. Goodman, “Some first-order properties of light waves,” in Statistical Optics (Wiley, New York, 1985), pp. 116–156.
  19. T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach (Academic, New York, 1967).
  20. P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical Inference (Printice-Hall Europe, London, 1995).
  21. J. Garcia, J. Campos, and C. Ferreira, “Multichannel pattern recognition using a minimum average correlation energy filter,” Pure Appl. Opt. 3, 221–224 (1994).
  22. F. Goudail and Ph. Réfrégier, “Algorithmes statistiques pour le traitement des images polarimétriques en lumière cohérente,” Traitement Signal 18, 297–319 (2001).
  23. H. Stocker and J. W. Harris, Handbook of Mathematics and Computational Science (Springer-Verlag, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited