OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2344–2352

Simulation of confined and enhanced optical near fields for a long narrow aperture in a pyramidal structure on a thick metallic screen

Kazuo Tanaka and Masahiro Tanaka  »View Author Affiliations

JOSA A, Vol. 21, Issue 12, pp. 2344-2352 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of long narrow aperture in a pyramidal structure on a thick metallic screen is proposed, and optical wave scattering by this structure is simulated. This aperture structure provides high emission intensity and small spot size simultaneously through excitation of the surface plasmon polaritons on the sidewalls of the pyramidal structure. Scattering of optical waves by this structure in the thick metallic screen is solved numerically with a volume integral equation by generalized conjugate residual iteration and fast Fourier transformation. The basic characteristics of the near-field intensities of the aperture are investigated in detail.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1220) Diffraction and gratings : Apertures
(180.5810) Microscopy : Scanning microscopy

Original Manuscript: June 9, 2003
Revised Manuscript: April 11, 2004
Manuscript Accepted: April 11, 2004
Published: December 1, 2004

Kazuo Tanaka and Masahiro Tanaka, "Simulation of confined and enhanced optical near fields for a long narrow aperture in a pyramidal structure on a thick metallic screen," J. Opt. Soc. Am. A 21, 2344-2352 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]
  2. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).
  3. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  4. M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
  5. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  6. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  7. A. Roberts, “Small-hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991). [CrossRef]
  8. L. Novotony, D. W. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995). [CrossRef]
  9. R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997). [CrossRef]
  10. E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001). [CrossRef] [PubMed]
  11. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002). [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  13. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002). [CrossRef] [PubMed]
  14. K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003). [CrossRef] [PubMed]
  15. E. K. Miller, L. Medgyesi-Mitschnag, E. H. Newsman, eds., Computational Electromagnetics Frequency-Domain Method of Moments (IEEE Press, Piscataway, N.J., 1992).
  16. J. H. Wang, Generalized Moment Method in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).
  17. J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989). [CrossRef]
  18. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995). [CrossRef] [PubMed]
  19. D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996). [CrossRef]
  20. O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996). [CrossRef]
  21. O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997). [CrossRef]
  22. C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997). [CrossRef]
  23. K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996). [CrossRef]
  24. K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001). [CrossRef]
  25. K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002). [CrossRef]
  26. K. Tanaka, M. Tanaka, “Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation,” Appl. Opt. 43, 1734–1746 (2004). [CrossRef] [PubMed]
  27. K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004). [CrossRef]
  28. K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004). [CrossRef]
  29. R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).
  30. A. B. Samokhin, “Integral equations of the electrodynamics for three-dimensional structure and iterative method of solving them,” J. Commun. Technol. Electron. 38, 15–34 (1993).
  31. C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneous and anisotropy,” IEEE Trans. Antennas Propag. 37, 384–389 (1989). [CrossRef]
  32. C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Trans. Microwave Theory Tech. 41, 510–515 (1993). [CrossRef]
  33. B. J. Lin, “Electromagnetic near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 976–981 (1972). [CrossRef]
  34. E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited