OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2424–2430

Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion

Michael Liebling and Michael Unser  »View Author Affiliations


JOSA A, Vol. 21, Issue 12, pp. 2424-2430 (2004)
http://dx.doi.org/10.1364/JOSAA.21.002424


View Full Text Article

Acrobat PDF (660 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a robust autofocus method for reconstructing digital Fresnel holograms. The numerical reconstruction involves simulating the propagation of a complex wave front to the appropriate distance. Since the latter value is difficult to determine manually, it is desirable to rely on an automatic procedure for finding the optimal distance to achieve high-quality reconstructions. Our algorithm maximizes a sharpness metric related to the sparsity of the signal’s expansion in distance-dependent waveletlike Fresnelet bases. We show results from simulations and experimental situations that confirm its applicability.

© 2004 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1000) Holography : Aberration compensation
(100.3010) Image processing : Image reconstruction techniques
(100.7410) Image processing : Wavelets
(110.3000) Imaging systems : Image quality assessment

Citation
Michael Liebling and Michael Unser, "Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion," J. Opt. Soc. Am. A 21, 2424-2430 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-12-2424


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
  2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
  3. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  4. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).
  5. Th. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986).
  6. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
  7. E. Cuche, F. Bevilacqua, and Ch. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
  8. E. Cuche, P. Marquet, and Ch. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
  9. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  10. M. Liebling, Th. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
  11. M. Liebling, Th. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
  12. R. A. Jarvis, “Focus optimization criteria for computer image-processing,” Microscope 24, 163–180 (1976).
  13. A. Erteza, “Sharpness index and its application to focus control,” Appl. Opt. 15, 877–881 (1976).
  14. S. J. Erasmus and K. C. A. Smith, “An automatic focusing and astigmatism correction system for the SEM and CTEM,” J. Microsc. 127, 185–199 (1982).
  15. H. Lichte, “Optimum focus for taking electron holograms,” Ultramicroscopy 38, 13–22 (1991).
  16. R. Yin, P. J. Flynn, and S. L. Broschat, “Position-dependent defocus processing for acoustic holography images,” Int. J. Imaging Syst. Technol. 12, 101–111 (2002).
  17. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).
  18. R. T. Brigantic, M. C. Roggemann, K. W. Bauer, and B. M. Welsh, “Image-quality metrics for characterizing adaptive optics system performance,” Appl. Opt. 36, 6583–6593 (1997).
  19. E. W. Justh, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and P. S. Krishnaprasad, “Adaptive optics with advanced phase-contrast techniques. II. High-resolution wave-front control,” J. Opt. Soc. Am. A 18, 1300–1311 (2001).
  20. E. H. Linfoot, “Transmission factors and optical design,” J. Opt. Soc. Am. 46, 740–752 (1956).
  21. B. Horn, “Project MAC: Focusing,” MIT Artificial Intelligence Memo 160, Massachusetts Institute of Technology, Cambridge, Mass. (1968), ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-160.pdf.
  22. P. Grossman, “Depth from focus,” Pattern Recogn. Lett. 5, 63–69 (1987).
  23. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Digital method for measuring the focus error,” Appl. Opt. 36, 7204–7209 (1997).
  24. J. R. Fienup, “Synthetic-aperture radar autofocus by maximizing sharpness,” Opt. Lett. 25, 221–223 (2000).
  25. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
  26. J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
  27. L. Sica, “Image-sharpness criterion for space-variant imaging,” J. Opt. Soc. Am. 71, 1172–1175 (1981).
  28. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352–8357 (1997).
  29. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81–91 (1985).
  30. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003).
  31. P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A Pure Appl. Opt. 4, 34–49 (2002).
  32. J. Widjaja and S. Jutamulia, “Use of wavelet analysis forimproving autofocusing capability,” Opt. Commun. 151, 12–14 (1998).
  33. F. Rooms, A. Pizurica, and W. Philips, “Estimating image blur in the wavelet domain,” in Proceedings of the Fifth Asian Conference on Computer Vision (ACCV) [Asian Federation of Computer Vision Societies (AFCV), Victoria, Australia, 2002], pp. 210–215.
  34. L. Onural and M. Kocatepe, “Family of scaling chirp functions, diffraction, and holography,” IEEE Trans. Image Process. 43, 1568–1578 (1995).
  35. S. G. Mallat, “A theory for multiresolution signal decomposition—the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).
  36. B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996).
  37. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
  38. D. L. Donoho, “Superresolution via sparsity constraints,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 23, 1309–1331 (1992).
  39. J. B. Weaver, X. Yansun, D. M. Healy, Jr., and L. D. Cromwell, “Filtering noise from images with wavelet transforms,” Magn. Reson. Med. 21, 288–295 (1991).
  40. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika 81, 425–455 (1994).
  41. D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data compression and harmonic analysis,” IEEE Trans. Inf. Theory 44, 2435–2476 (1998).
  42. JPEG 2000 Image Coding System, ISO/IEC FCD15444–1:2000 [International Organization for Standardization (ISO), Geneva, Switzerland, 2000], http://www.iso.org/.
  43. M. Zibulevsky and Y. Y. Zeevi, “Extraction of a source from multichannel data using sparse decomposition,” Neuro- computing 49, 163–173 (2002).
  44. S. G. Mallat, A Wavelet Tour of Signal Processing (Academic, San Diego, Calif., 1998).
  45. G. Battle, “A block spin construction of ondelettes. 1. Lemarié functions,” Commun. Math. Phys. 110, 601–615 (1987).
  46. P. G. Lemarié-Rieusset, “Ondelettes à localisation exponentielle,” J. Math. Pures Appl. 67, 227–236 (1988).
  47. Matlab Function Reference, Vol. 2: F–O (The MathWorks, Natick, Mass., 2002).
  48. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, N.J., 1977).
  49. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice Hall, Englewood Cliffs, N.J., 1973).
  50. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  51. R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, Reading, Mass., 1988).
  52. M. Unser and Th. Blu, “Wavelet theory demystified,” IEEE Trans. Signal Process. 51, 470–483 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited