OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2431–2441

Reflection of light at structured chiral interfaces

Dick Bedeaux, Mikhail A. Osipov, and Jan Vlieger  »View Author Affiliations

JOSA A, Vol. 21, Issue 12, pp. 2431-2441 (2004)

View Full Text Article

Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modified boundary conditions and general surface constitutive equations are derived for a very thin interface with some internal structure that separates two different media. The modified boundary conditions are reduced to the standard ones for an idealized steplike sharp interface without additional structure. These modified boundary conditions together with surface constitutive equations and Maxwell equations in the bulk form a complete set of macroscopic equations to describe optical properties of planar interfaces with thicknesses much less then the wavelength of light. In particular, two-dimensional chiral surfaces are considered that are characterized by surface gyrotropic coefficients even if the two different bulk media and the interface are made of nonchiral materials. It is shown that the rotation of the polarization state should occur for the light reflected from such a surface. This result is supported by recent experimental data.

© 2004 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.5770) Optics at surfaces : Roughness
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6700) Optics at surfaces : Surfaces

Dick Bedeaux, Mikhail A. Osipov, and Jan Vlieger, "Reflection of light at structured chiral interfaces," J. Opt. Soc. Am. A 21, 2431-2441 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, UK, 1980).
  2. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).
  3. E. U. Condon, “Theories of optical rotary power,” Rev. Mod. Phys. 9, 432–459 (1937).
  4. M. Born, Optik (Springer-Verlag, Heidelberg, Germany, 1972).
  5. H. B. G. Casimir, “Note on a macroscopic theory of optical rotation and double refraction in cubic crystals,” Philips Res. Rep. 21, 417–445 (1966).
  6. J. Maclennan and M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
  7. J. Maclennan, U. Sohling, N. A. Clark, and M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
  8. K. Pang and N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
  9. X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, and J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
  10. J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, and D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
  11. R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
  12. F. Charra and J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
  13. M. A. Osipov, B. T. Pickup, M. Fehevari, and D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
  14. A. B. Buda, T. Auf der Heyde, and K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
  15. A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
  16. We most thoroughly disagree with one of the referees, who qualified surface chirality to be an oxymoron. It should be noted in this context that the assumption that the surface is thin compared with the wavelength of light does not imply that it has no finite thickness. In fact, all the constitutive coefficients we introduce for the surface are proportional to this thickness.
  17. V. P. Drachev, W. D. Bragg, V. A. Podolsky, V. P. Safonov, W. T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Am. B 18, 1896–1903 (2001).
  18. L. Hecht and L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
  19. L. R. Arnaut and L. E. Davis, “Dispersion characteristics of planar chiral structures,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (Nexus Media, Swanley, UK, 1995), pp. 381–388.
  20. Yu. Tsvirko and M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).
  21. B. V. Bokut and A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).
  22. E. V. Bokut and F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).
  23. V. M. Agranovich and V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).
  24. K. Natori, “Boundary-condition at surface for optically active medium,” J. Phys. Soc. Jpn. 41, 596–600 (1976).
  25. O. S. Eritsyan, “Optical problems in the electrodynamics of gyrotropic media,” Sov. Phys. Usp. 25, 919–935 (1982).
  26. T. Takizawa, “Effect of optical activity on the reflectance of paratellurite, TeO2,” J. Phys. Soc. Jpn. 50, 3054–3062 (1981).
  27. U. Schlagheck, “Symmetry properties in theory of optical-activity,” Z. Phys. 258, 223–230 (1973).
  28. M. P. Silverman, “Specular light-scattering from a chiral medium-unambigous test of gyrotropic constitutive relations,” Lett. Nuovo Cimento 43, 378–382 (1985).
  29. M. P. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A 3, 830–837 (1986).
  30. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
  31. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic-wave propagation through a dielectric–chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
  32. A. Yu. Luk’yanov and M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).
  33. A. R. Bungay, Yu. P. Svirko, and N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
  34. R. M. Hornreich and S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
  35. J. C. Maxwell, A Treatise on Electricity & Magnetism (Dover, New York, 1954).
  36. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces (Imperial College, London, 2002).
  37. A. A. Golubkov and V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
  38. A. Lakhtakia and W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).
  39. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).
  40. S. L. Prosvirnin and N. I. Zheludev, “Nonreciprocal diffraction of light on a planar chiral structure,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.
  41. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) (2003).
  42. E. M. Wright and N. I. Zheludev, “Broken time reversal and parity symmetries for electromagnetic excitations in planar chiral nanostructures,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.
  43. J. P. Rabe, S. Buchholz, and L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
  44. L. Askadskaya, C. Boeffel, and J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
  45. J. R. Wait, “Theory of magnetotelluric fields,” J. Res. Natl. Bur. Stand. Sect. D 66, 509–541 (1962).
  46. R. W. Groom and R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
  47. P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics 10, 201–211 (1990).
  48. A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited