OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2447–2454

Self-pumped phase conjugation in microspheres

Xue-Heng Zheng  »View Author Affiliations


JOSA A, Vol. 21, Issue 12, pp. 2447-2454 (2004)
http://dx.doi.org/10.1364/JOSAA.21.002447


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When a microscopic sphere is illuminated by a laser beam, interference fringes inside the sphere lead through the Kerr effect to a holographic grating. This grating is capable of phase conjugation, which is particularly strong when optical resonance takes place. According to numerical simulation, based on the Green function method, phase-conjugation reflectivity R=0.5 can be achieved in a single silica sphere of ∼9-μm diameter with realistic laser power. Such spheres can be aligned together to become a phase-conjugation mirror of large area and high reflectivity.

© 2004 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5040) Nonlinear optics : Phase conjugation
(290.4020) Scattering : Mie theory

History
Original Manuscript: May 21, 2004
Manuscript Accepted: May 27, 2004
Published: December 1, 2004

Citation
Xue-Heng Zheng, "Self-pumped phase conjugation in microspheres," J. Opt. Soc. Am. A 21, 2447-2454 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-12-2447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982). [CrossRef] [PubMed]
  2. M. Esselbach, G. Cedilnik, A. Kiessling, T. Baade, R. Kowarschik, V. Prokofiev, “Phase conjugation in fibre-like BTO crystals with applied electric ac field,” J. Opt. A Pure Appl. Opt. 1, 735–740 (1999). [CrossRef]
  3. G. Mie, “Beitrage zur optik truber speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  4. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1989).
  6. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  7. R. L. Sutherland, D. G. McLean, S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003).
  8. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).
  9. H.-B. Lin, J. D. Eversile, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1989). [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002). [CrossRef]
  11. J.-Z. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151–153 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited