OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 288–297

Shape evolution of a light pulse in a linear birefringent medium

Luc Dettwiller  »View Author Affiliations


JOSA A, Vol. 21, Issue 2, pp. 288-297 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000288


View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spreading of a three-dimensional quasi-monochromatic progressive directional wave packet (such as a laser pulse) propagating freely in a linear and transparent birefringent medium is described geometrically by means of the ellipsoid representative of the pulse’s second-order moments. The medium is characterized by a second-order expansion of its dispersion relation ω(K) about the mean wave vector Km of the pulse, i.e., by its Hessian matrix (HKmω), which plays two important roles. Then, for some elements of (HKmω), practical expressions are provided that are related to the curvature and dispersion properties of the normal surface of the medium. Then cases in which these properties determine completely the asymptotic transverse or axial spreadings of the wave packet are specified, and the results of an experiment are discussed.

© 2004 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.1190) Materials : Anisotropic optical materials
(320.0320) Ultrafast optics : Ultrafast optics
(320.5550) Ultrafast optics : Pulses

History
Original Manuscript: March 11, 2003
Revised Manuscript: August 25, 2003
Manuscript Accepted: October 14, 2003
Published: February 1, 2004

Citation
Luc Dettwiller, "Shape evolution of a light pulse in a linear birefringent medium," J. Opt. Soc. Am. A 21, 288-297 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-2-288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Rothenberg, E. Joshua, “Complete all-optical switching of visible picosecond pulses in birefringent fiber,” Opt. Lett. 18, 796–798 (1993). [CrossRef] [PubMed]
  2. M. Trippenbach, Y. B. Band, “Propagation of light pulses in nonisotropic media,” J. Opt. Soc. Am. B 13, 1403–1411 (1996). [CrossRef]
  3. R. Petit, Ondes électromagnétiques en radioélectricité et en optique (Masson, Paris, 1988).
  4. C. Radzewicz, J. S. Krasinsky, M. J. la Grone, M. Trippenbach, Y. B. Band, “Interferometric measurement of femtosecond wavepacket tilting in rutile crystals,” J. Opt. Soc. Am. B 14, 420–424 (1997). [CrossRef]
  5. L. Dettwiller, “Asymptotic evolution of a three-dimensional wave packet propagating in a linear dispersive medium,” Eur. J. Phys. 23, 35–44 (2002). [CrossRef]
  6. L. Dettwiller, “Propagation de la lumière, dispersion, et absorption,” in EGEM—Optique géométrique et propagation, J.-L. Meyzonnette, ed. (Hermès Lavoisier, Paris, 2003), Chap. 1.
  7. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, Oxford, 1980).
  8. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 79–82.
  9. M. Miyagi, S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18, 678–682 (1979). [CrossRef] [PubMed]
  10. M. Miyagi, S. Nishida, “Pulse spreading in a single-mode optical fiber due to third-order dispersion: effect of optical source bandwidth,” Appl. Opt. 18, 2237–2240 (1979). [CrossRef] [PubMed]
  11. S. A. Akhmanov, A. P. Sukhorukov, S. A. Chirkin, “Stationary phenomena and space-time analogy in non-linear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  12. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969). [CrossRef]
  13. G. Bruhat, Cours de physique générale Optique (Masson, Paris, 1992).
  14. A. Gray, Modern Differential Geometry of Curves and Surfaces (CRC, Boca Raton, Fla., 1993).
  15. A. J. Schell, N. Bloembergen, “Laser studies of internal conical diffraction. I. Quantitative comparison of experimental and theoretical intensity distribution in aragonite,” J. Opt. Soc. Am. 68, 1093–1098 (1978). [CrossRef]
  16. A. J. Schell, N. Bloembergen, “Laser studies of internal conical diffraction. II. Intensity patterns in an optically active crystal, α-iodic acid,” J. Opt. Soc. Am. 68, 1098–1106 (1978). [CrossRef]
  17. W. J. Tropf, M. E. Thomas, T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, Vol. 2, M. Bass, ed. (McGraw-Hill, New York, 1995). Gives (pp. 33.61–33. 67) dispersion formulas for a hundred crystals at room temperature (and for rutile the Sellmeier relations no2≅5.913+0.2441 μm2λ02-0.0803 μm2,ne2≅7.197+0.3322 μm2λ02-0.0843 μm2 from 0.43 to 1.5 µm); it gives again the refractive indices of calcite from 0.198 to 3.324 µm, p. 33.70.
  18. See, for example, C. Doss-Bachelet, J.-P. Françoise, C. Piquet, Géométrie différentielle (Ellipses, Paris, 2000), p. 37.
  19. See, for example, E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed. (Chapman & Hall/CRC, Boca Raton, Fla., 2003), p. 869.
  20. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten (Fachinformationszentrum, Karlsruhe, Germany, 1981).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, Mass., 1985), Vol. 1, and 1991 Vol. 2.
  22. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1985), Vol. 15b.
  23. J. M. Bennett, “Polarizers,” in Handbook of Optics, Vol. 2, M. Bass, ed. (McGraw-Hill, New York, 1995). Gives (pp. 3.5–3.6) the refractive indices and the absorption coefficients of calcite from 0.1318 to 3.4 µm.
  24. F. J. Micheli, “Ueber den Einfluss der Temperatur auf die Dispersion ultravioletter Strahlen in Flussspat, Steinsalz, Quarz und Kalkspat,” Ann. Phys. 7, 772–789 (1902). Gives the temperature coefficients of the ordinary and extraordinary indices of quartz and calcite at approximately 20 wavelengths from 211 to 643 nm. [CrossRef]
  25. K. Kato, E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002). [CrossRef] [PubMed]
  26. J. A. Ratcliffe, Magneto-Ionic Theory and Its Applications (Cambridge U. Press, Cambridge, UK, 1959).
  27. K. G. Budden, Radio Waves in The Ionosphere (Cambridge U. Press, Cambridge, UK, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited