OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 335–345

Differences in the optical properties of vertebrate photoreceptor classes leading to axial polarization sensitivity

Nicholas W. Roberts, Helen F. Gleeson, Shelby E. Temple, Theodore J. Haimberger, and Craig W. Hawryshyn  »View Author Affiliations

JOSA A, Vol. 21, Issue 3, pp. 335-345 (2004)

View Full Text Article

Acrobat PDF (662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization microspectrophotometry recordings were made to investigate possible differences in the way different spectral classes of photoreceptors from coho salmon (Oncorhynchus kisutch) absorb linearly polarized light. The results strongly suggest that rods and cones absorb transversely illuminating polarized light differently. Cones were found to exhibit a tilted optical geometry in which the maximum absorbance occurred when the E-vector was at a small angle to the transverse axis of the outer segment. Solutions to Maxwell’s equations were deduced to investigate the effect of this tilt under conditions of axial illumination. Calculations show an approximate 10% difference in the absorbance of orthogonal polarizations, suggesting the possibility of axial dichroism in the cones of this species.

© 2004 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5370) Vision, color, and visual optics : Physiological optics

Nicholas W. Roberts, Helen F. Gleeson, Shelby E. Temple, Theodore J. Haimberger, and Craig W. Hawryshyn, "Differences in the optical properties of vertebrate photoreceptor classes leading to axial polarization sensitivity," J. Opt. Soc. Am. A 21, 335-345 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. J. Freake, “Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa,” J. Exp. Biol. 202, 1159–1166 (1999).
  2. K. Adler and J. B. Phillips, “Orientation in a desert lizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
  3. D. H. Taylor and K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
  4. K. P. Able, “Skylight polarization patterns at dusk influence migratory orientations in birds,” Nature 299, 550–551 (1982).
  5. J. B. Phillips and F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
  6. C. W. Hawryshyn and W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
  7. B. A. Fineran and J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
  8. T. H. Waterman, “Natural polarised light and e-vector discrimination by vertebrates,” in Light as an Ecological Factor II (Blackwell, Oxford, UK, 1975), pp. 305–335.
  9. D. C. Parkyn and C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
  10. D. J. Coughlin and C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
  11. C. W. Hawryshyn, M. G. Arnold, E. Bowering, and R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
  12. I. N. Flamarique and H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
  13. I. N. Flamarique, C. W. Hawryshyn, and F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
  14. A. W. Snyder, “Physics of vision in compound eyes,” in Handbook of Sensory Physiology VII/6A, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), pp. 284–285.
  15. M. F. Land and D. E. Nilsson, “Light and Vision,” in Animal Eyes (Oxford U. Press, Oxford, UK, 2002), pp. 29–31.
  16. P. K. Brown, “Rhodopsin rotates in the visual receptor membrane,” Nature New Biol. 236, 35–38 (1972).
  17. R. A. Cone, “Rotational diffusion of rhodopsin on the visual receptor membrane,” Nature New Biol. 236, 39–43 (1972).
  18. P. A. Liebman, “In situ microspectrophotometric studies on the pigments of single retinal rods,” Biophys. J. 2, 161–178 (1962).
  19. F. I. Harosi and E. F. MacNichol, Jr., “Dichroic microspectrophotometer: a computer assisted, rapid, wavelength scanning photometer for measuring the linear dichroism of single cells,” J. Opt. Soc. Am. 64, 903–918 (1974).
  20. E. R. Loew and H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
  21. J. M. Bowmaker, “Microspectrophotometry of vertebrate photoreceptors,” Vision Res. 24, 1641–1650 (1984).
  22. V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
  23. C. W. Hawryshyn, T. J. Haimberger, and M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
  24. F. I. Harosi, “Microspectrophotometry and optical phenomena: birefringence, dichroism, and anomalous dispersion,” in Vertebrate photoreceptor optics, J. M. Enoch and F. L. Tobey, Jr., eds. (Springer-Verlag, Berlin, 1981), pp. 337–397.
  25. P. A. Liebman, “Birefringence, dichroism and rod outer segment structure,” in Photoreceptor Optics, A. W. Snyder and R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 119–214.
  26. A. G. Palacios, R. Strivastava, and T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
  27. R. A. Weale, “On the linear dichroism of frog rods,” Vision Res. 11, 1373–1385 (1971).
  28. F. I. Harosi and F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
  29. F. I. Harosi, “Linear dichroism of rods and cones,” in NATO Advanced Study Institute Series, Series A: Life Sciences (Plenum, New York, 1975), pp. 55–65.
  30. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw Hill, New York, 1994), pp. 242–246.
  31. A. I. Cohen, “Rods and cones,” in Handbook of Sensory Physiology VII/2, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), pp. 63–110.
  32. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 218–219.
  33. G. Gröbner, C. G. Burnett, A. Choi, J. Mason, and A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
  34. P. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Frances, London, 1997), pp. 1–5.
  35. K. Boesze-Battaglia and R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).
  36. R. Murari, M. P. Murari, and W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
  37. T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidycholine bilayers,” Biochim. Biophys. Acta 513, 43–58 (1973).
  38. M. R. Brzustowicz, W. Stillwell, and S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state 2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
  39. D. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
  40. N. W. Roberts and H. F. Gleeson, Department of Physics, University of Manchester, Manchester, M13 9PL, UK, are preparing a manuscript to be called “The absorbance of polarized light by vertebrate photoreceptors.”
  41. P. A. Liebman, W. S. Jagger, M. W. Kaplan, and F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
  42. J. N. Israelchvili, R. A. Sammut, and A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
  43. D. G. Stavenga and H. H. van Barneveld, “On dispersion in visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
  44. B. Chance, R. Perry, L. Akerman, and B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
  45. R. Wehner, “The hymenopteran skylight compass: matched filtering and parallel coding,” J. Exp. Biol. 146, 63–85 (1989).
  46. D. J. Coughlin and C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
  47. R. Mathies and L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
  48. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987), pp. 340–352.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited