OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 430–438

Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals

Yair Shifman and Yehuda Leviatan  »View Author Affiliations


JOSA A, Vol. 21, Issue 3, pp. 430-438 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000430


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(100.7410) Image processing : Wavelets
(230.0230) Optical devices : Optical devices
(230.1480) Optical devices : Bragg reflectors
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: August 18, 2003
Revised Manuscript: November 4, 2003
Manuscript Accepted: November 6, 2003
Published: March 1, 2004

Citation
Yair Shifman and Yehuda Leviatan, "Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals," J. Opt. Soc. Am. A 21, 430-438 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-3-430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.
  2. L. Shen, S. He, “Analysis for the convergence problem of the plane-wave expansion method for photonic crystals,” J. Opt. Soc. Am. A 19, 1021–1024 (2002). [CrossRef]
  3. O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002). [CrossRef]
  4. A. Yariv, “Coupled-wave formalism for optical waveguiding by transverse Bragg reflection,” Opt. Lett. 27, 936–938 (2002). [CrossRef]
  5. J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002). [CrossRef]
  6. E. Michielssen, A. A. Ergin, B. Shanker, “Computational complexity and implementation of two-level plane wave time domain algorithm for scalar wave equation,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 944–947.
  7. A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998). [CrossRef]
  8. A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.
  9. B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000). [CrossRef]
  10. D. S. Weile, B. Shanker, E. Michielssen, “An accurate scheme for the numerical solution of the time domain electric field integral equation,” in Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 4, pp. 516–519.
  11. D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.
  12. M. Lu, E. Michielssen, “Closed form evaluation of time domain fields due to rao-wilton-glisson sources for use in marching-on-in-time based EFIE solvers,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 74–77.
  13. D. A. Vechinski, S. M. Rao, “Transient scattering from two-dimensional dielectric cylinders and arbitrary shape,” IEEE Trans. Antennas Propag. 40, 1054–1060 (1992). [CrossRef]
  14. P. J. Davies, “On the stability of time-marching schemes for the general surface electric-field integral equation,” IEEE Trans. Antennas Propag. 44, 1467–1473 (1996). [CrossRef]
  15. J. Garrett, A. Ruehli, C. Paul, “Stability improvements of integral equations,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 1810–1813.
  16. W. Pinello, A. Ruehli, A. Cangellaris, “Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models,” in Digest of IEEE–APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2, pp. 966–969.
  17. S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984). [CrossRef]
  18. S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986). [CrossRef]
  19. S. M. Rao, T. K. Sarkar, “Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,” Microwave Opt. Technol. Lett. 17, 66–69 (1998). [CrossRef]
  20. M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998). [CrossRef]
  21. S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999). [CrossRef]
  22. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).
  23. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley–Cambridge Press, Wellesley, Mass., 1996).
  24. Z. Baharav, Y. Leviatan, “Impedance matrix compression with the use of wavelet expansions,” Microwave Opt. Technol. Lett. 12, 268–272 (1996). [CrossRef]
  25. Z. Baharav, Y. Leviatan, “Impedance matrix compression using adaptively-constructed basis functions,” IEEE Trans. Antennas Propag. 44, 1231–1238 (1996). [CrossRef]
  26. Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations,” Microwave Opt. Technol. Lett. 12, 145–150 (1996). [CrossRef]
  27. Y. Shifman, Y. Leviatan, “On the use of spatiotemporal multiresolution analysis in method of moments solutions for the time-domain integral equation,” IEEE Trans. Antennas Propag. 49, 1123–1129 (2001). [CrossRef]
  28. Y. Shifman, Y. Leviatan, “Analysis of transient interaction of electromagnetic pulse with an air layer in a dielectric medium using wavelet-based implicit tdie formulation,” IEEE Trans. Microwave Theory Tech. 50, 2018–2022 (2002). [CrossRef]
  29. Y. Shifman, “Spatio-temporal multiresolution analysis for efficient method of moments solutions of transient electro-magnetic wave scattering,” Ph.D. thesis (Technion–Israel Institute of Technology, Haifa, Israel, 2002).
  30. R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw-Hill, New York, 1996).
  31. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).
  32. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).
  33. R. Mittra, “Integral equation methods for transient scattering,” in Transient Electromagnetic Fields, Vol. 10 of Topics in Applied Physics, L. B. Felsen, ed. (Springer-Verlag, Berlin, 1976), pp. 73–128. [CrossRef]
  34. E. K. Miller, “Time domain modeling in electromagnetics,” J. Electron. Waves Appl. 8, 1125–1172 (1994). [CrossRef]
  35. S. M. Rao, T. K. Sarkar, “Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme—TM incident,” Microwave Opt. Technol. Lett. 15, 342–347 (1997). [CrossRef]
  36. S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).
  37. Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet-basis,” IEEE Trans. Antennas Propag. 46, 226–233 (1998). [CrossRef]
  38. Z. Baharav, Y. Leviatan, “Wavelets in electromagnetics: the impedance matrix compression (IMC) method,” Int. J. Num. Model. 11, 69–84 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited