OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 499–509

Gridding-based direct Fourier inversion of the three-dimensional ray transform

Pawel A. Penczek, Robert Renka, and Hermann Schomberg  »View Author Affiliations


JOSA A, Vol. 21, Issue 4, pp. 499-509 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000499


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a fast and accurate direct Fourier method for reconstructing a function f of three variables from a number of its parallel beam projections. The main application of our method is in single particle analysis, where the goal is to reconstruct the mass density of a biological macromolecule. Typically, the number of projections is extremely large, and each projection is extremely noisy. The projection directions are random and initially unknown. However, it is possible to determine both the directions and f by an iterative procedure; during each stage of the iteration, one has to solve a reconstruction problem of the type considered here. Our reconstruction algorithm is distinguished from other direct Fourier methods by the use of gridding techniques that provide an efficient means to compute a uniformly sampled version of a function g from a nonuniformly sampled version of Fg, the Fourier transform of g, or vice versa. We apply the two-dimensional reverse gridding method to each available projection of f, the function to be reconstructed, in order to obtain Ff on a special spherical grid. Then we use the three-dimensional gridding method to reconstruct f from this sampled version of Ff. This stage requires a proper weighting of the samples of Ff to compensate for their nonuniform distribution. We use a fast method for computing appropriate weights that exploits the special properties of the spherical sampling grid for Ff and involves the computation of a Voronoi diagram on the unit sphere. We demonstrate the excellent speed and accuracy of our method by using simulated data.

© 2004 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing

History
Original Manuscript: June 4, 2003
Revised Manuscript: November 18, 2003
Manuscript Accepted: November 20, 2003
Published: April 1, 2004

Citation
Pawel A. Penczek, Robert Renka, and Hermann Schomberg, "Gridding-based direct Fourier inversion of the three-dimensional ray transform," J. Opt. Soc. Am. A 21, 499-509 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-4-499

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited