OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 622–631

Inverse scattering from phaseless measurements of the total field on a closed curve

Lorenzo Crocco, Michele D’Urso, and Tommaso Isernia  »View Author Affiliations


JOSA A, Vol. 21, Issue 4, pp. 622-631 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000622


View Full Text Article

Enhanced HTML    Acrobat PDF (556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach for quantitative electromagnetic imaging of scatterers located in free space from phaseless data is proposed and discussed. The procedure splits the problem into two steps. In the first one, we solve a phase-retrieval problem for the total field, thus estimating the amplitude and phase of the scattered field. Careful analysis of properties and possible representations of both scattered and incident fields allow us to introduce a criterion for an optimal choice of the measurement setup and a successful retrieval. Then the complex permittivity profile is reconstructed in the second step by use of the estimated scattered field. Numerical examples are provided to check the whole chain in the presence of noise-corrupted data.

© 2004 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(100.6950) Image processing : Tomographic image processing
(290.3200) Scattering : Inverse scattering

History
Original Manuscript: May 22, 2003
Revised Manuscript: October 23, 2003
Manuscript Accepted: December 2, 2003
Published: April 1, 2004

Citation
Lorenzo Crocco, Michele D’Urso, and Tommaso Isernia, "Inverse scattering from phaseless measurements of the total field on a closed curve," J. Opt. Soc. Am. A 21, 622-631 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-4-622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Colton, P. Monk, “The detection and monitoring of leukemia using electromagnetic waves: mathematical theory,” Inverse Probl. 10, 1235–1251 (1994). [CrossRef]
  2. P. M. Meaney, K. D. Paulsen, A. Hartow, R. K. Krone, “An active microwave imaging system for reconstruction of 2-D electrical property distributions,” IEEE Trans. Biomed. Eng. 42, 1017–1026 (1995). [CrossRef] [PubMed]
  3. O. M. Bucci, L. Crocco, T. Isernia, V. Pascazio, “Subsurface inverse scattering problems: quantifying, qualifying, and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001). [CrossRef]
  4. D. J. Daniels, “Surface-penetrating radar,” IEEE Electron. Commun. Eng. J. 8, 165–182 (1996). [CrossRef]
  5. J. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. 22, 3–13 (1984). [CrossRef]
  6. M. Moghaddam, W. C. Chew, “Nonlinear two-dimensional velocity profile inversion using time domain data,” IEEE Trans. Geosci. Remote Sens. 30, 147–156 (1992). [CrossRef]
  7. E. Wolf, “Determination of the amplitude and the phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18–20 (1970). [CrossRef]
  8. G. W. Faris, H. M. Hertz, “Tunable differential interferometer for optical tomography,” Appl. Opt. 28, 4662–4667 (1989). [CrossRef] [PubMed]
  9. O. M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Propag. 46, 351–359 (1998). [CrossRef]
  10. M. H. Maleki, A. J. Devaney, A. Schatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 10, 1356–1363 (1992). [CrossRef]
  11. M. H. Maleki, A. J. Devaney, “Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography,” J. Opt. Soc. Am. A 10, 1086–1092 (1993). [CrossRef]
  12. T. Takenaka, D. J. N. Wall, H. Harada, M. Tanaka, “Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field,” Microwave Opt. Technol. Lett. 14, 182–188 (1997). [CrossRef]
  13. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988), pp. 203–273.
  14. T. Isernia, G. Leone, R. Pierri, F. Soldovieri, “Role of the support and zero locations in phase retrieval by a quadratic approach,” J. Opt. Soc. Am. A 16, 1845–1856 (1999). [CrossRef]
  15. I. Catapano, L. Crocco, M. D’Urso, T. Isernia, “Advances in microwave tomography: phaseless measurements and layered backgrounds,” in Proceedings of the Second International Workshop on Advanced Ground Penetrating Radar, A. Yarovoy, ed. (International Research Centre for Telecommunications-Transmission and Radar, Delft University of Technology, The Netherlands, 2003), pp. 183–188.
  16. T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997). [CrossRef]
  17. T. Isernia, V. Pascazio, R. Pierri, “On the local minima in a tomographic imaging technique,” IEEE Trans. Geosci. Remote Sens. 39, 1596–1607 (2001). [CrossRef]
  18. L. Crocco, T. Isernia, “Inverse scattering with real data: detecting and imaging homogeneous dielectric objects,” Inverse Probl. 17, 1573–1583 (2001). [CrossRef]
  19. O. M. Bucci, N. Cardace, L. Crocco, T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A 18, 1832–1843 (2001). [CrossRef]
  20. O. M. Bucci, L. Crocco, T. Isernia, “A step-wise approach to inverse scattering problems,” in Proceedings of XXIV General Assembly of the International Union of Radio Science (URSI) (URSI, Ghent, Belgium, 2002; on CD-ROM).
  21. D. Colton, R. Krees, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlang, Berlin, Germany, 1992).
  22. R. Barakat, G. Newsam, “Necessary conditions for an unique solution to two-dimensional phase recovery,” J. Math. Phys. 25, 3190–3193 (1984). [CrossRef]
  23. J. L. C. Sanz, T. S. Huang, “Unique reconstruction of a band-limited multidimensional signal from its phase or magnitude,” J. Opt. Soc. Am. 73, 1446–1450 (1983). [CrossRef]
  24. P. Debye, “Das Verhalten von Lichtwellen in der Nahe eines Brenpunktes oder einer Brennlinie,” Ann. P. Physik 4, 30–57 (1909).
  25. O. M. Bucci, T. Isernia, “Electromagnetic inverse scattering: retrievable information and measurement strategies,” Radio Sci. 32, 2123–2138 (1997). [CrossRef]
  26. D. L. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D 6, L6–L9 (1973). [CrossRef]
  27. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform pairs from noisy data using a support constraint,” J. Opt. Soc. Am. A 4, 118–124 (1987). [CrossRef]
  28. R. Barakat, G. Newsam, “Algorithms for reconstruction of partially known, band-limited Fourier transform pairs from noisy data II. The non-linear problem of phase retrieval,” J. Integr. Eq. 9 (suppl.), 77–125 (1985).
  29. M. A. Fiddy, “Inversion of optical scattered field data,” J. Phys. D 19, 301–317 (1986). [CrossRef]
  30. R. P. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990). [CrossRef]
  31. R. Harrison, “Phase retrieval in crystallography,” J. Opt. Soc. Am. A 7, 1046–1055 (1990).
  32. D. Morris, “Phase retrieval in the radio holography of reflector antennas and radio telescopes,” IEEE Trans. Antennas Propag. 33, 749–755 (1985). [CrossRef]
  33. J. E. McCormack, G. Junkin, A. P. Anderson, “Micro- wave metrology of reflector antennas from a single amplitude,” IEE Proc. Part H: Microwaves, Antennas Propag. 137, 276–284 (1990).
  34. O. M. Bucci, G. D’Elia, G. Leone, R. Pierri, “Far-field pattern determination from the near-field amplitude on two surfaces,” IEEE Trans. Antennas Propag. 38, 1772–1779 (1990). [CrossRef]
  35. T. Isernia, G. Leone, R. Pierri, “Radiation pattern evaluation from near-field intensities on planes,” IEEE Trans. Antennas Propag. 44, 701–710 (1996). [CrossRef]
  36. R. G. Yaccarino, Y. Rahmat-Samii, “Phaseless bi-polar planar near-field measurements and diagnostics of array antennas,” IEEE Trans. Antennas Propag. 47, 574–583 (1999). [CrossRef]
  37. F. Las-Heras, T. K. Sarkar, “A direct optimization approach for source reconstruction and NF–FF transformation using amplitude-only data,” IEEE Trans. Antennas Propag. 50, 500–510 (2002). [CrossRef]
  38. W. Chalodhorn, D. R. DeBoer, “Uses of microwave lenses in phase retrieval microwave holography of reflector antennas,” IEEE Trans. Antennas Propag. 50, 1274–1284 (2002). [CrossRef]
  39. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. 47, 334–341 (1964).
  40. O. M. Bucci, L. Crocco, T. Isernia, V. Pascazio, “Inverse scattering problems with multifrequency data: reconstruction capabilities and solution strategies,” IEEE Trans. Geosci. Remote Sens. 38, 1749–1756 (2000). [CrossRef]
  41. P. M. van den Berg, R. E. Kleinman, “A total variation enhanced modified gradient algorithm for profile reconstruction,” Inverse Probl. 11, L5–L10 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited