OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 683–696

Validation of a combined corneal topographer and aberrometer based on Shack–Hartmann wave-front sensing

Fan Zhou, Xin Hong, Donald T. Miller, Larry N. Thibos, and Arthur Bradley  »View Author Affiliations


JOSA A, Vol. 21, Issue 5, pp. 683-696 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000683


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A corneal aberrometer based on Shack–Hartmann wave-front sensing was developed and validated by using calibrated aspheric surfaces. The aberrometer was found to accurately measure corneal reflective aberrations, from which corneal topography and corneal refractive aberrations were derived. Measurements of reflective aberrations correlated well with theory ( R 2 = 0.964 to 0.994). The sag error root mean square (RMS) was small, ranging from 0.1 to 0.17 μm for four of the five calibrated surfaces with the fifth at 0.36 μm as a result of residual defocus. Measured refractive aberrations matched with theory and whole-eye aberrometry to within a small fraction of a wavelength. Measurements on three human corneas revealed very large refractive astigmatism (0.65–1.2 μm) and appreciable levels of trefoil (0.08–0.47 μm), coma (0.14–0.19 μm), and spherical aberration (0.18–0.25 μm). The mean values of these aberrations were significantly larger than the RMS in repeated measurements.

© 2004 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: June 6, 2003
Revised Manuscript: November 3, 2003
Manuscript Accepted: November 3, 2003
Published: May 1, 2004

Citation
Fan Zhou, Xin Hong, Donald T. Miller, Larry N. Thibos, and Arthur Bradley, "Validation of a combined corneal topographer and aberrometer based on Shack–Hartmann wave-front sensing," J. Opt. Soc. Am. A 21, 683-696 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-5-683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  2. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  3. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  4. L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999). [CrossRef]
  5. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  6. X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001). [CrossRef]
  7. A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002). [CrossRef]
  8. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  9. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001). [CrossRef]
  10. S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  11. K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001). [CrossRef]
  12. J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002). [PubMed]
  13. N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002). [CrossRef]
  14. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002). [CrossRef] [PubMed]
  15. P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002). [CrossRef]
  16. X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000). [PubMed]
  17. S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001). [PubMed]
  18. Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002). [PubMed]
  19. Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002). [PubMed]
  20. J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000). [CrossRef] [PubMed]
  21. J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002). [PubMed]
  22. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002). [CrossRef] [PubMed]
  23. S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002). [PubMed]
  24. N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002). [PubMed]
  25. D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000). [PubMed]
  26. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996). [CrossRef] [PubMed]
  27. D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53 (January), 31–36 (2000). [CrossRef]
  28. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  29. L. N. Thibos, “The prospects for perfect vision,” J. Refract. Surg. 16, S540–S546 (2000). [PubMed]
  30. R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001). [CrossRef] [PubMed]
  31. P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998). [CrossRef]
  32. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).
  33. R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996). [CrossRef]
  34. J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997). [CrossRef]
  35. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999). [CrossRef] [PubMed]
  36. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  37. T. Salmon, “Corneal contribution to the wavefront aberration of the eye,” Ph.D. dissertation (Indiana University, Bloomington, In., 1999).
  38. R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000). [PubMed]
  39. S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18, S572–S578 (2002). [PubMed]
  40. T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002). [CrossRef]
  41. M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001). [CrossRef]
  42. S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002). [CrossRef] [PubMed]
  43. S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002). [PubMed]
  44. R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995). [CrossRef]
  45. W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995). [CrossRef]
  46. D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998). [CrossRef]
  47. J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996). [PubMed]
  48. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000). [CrossRef]
  49. C. Campbell, “Reconstruction of the corneal shape with the MasterVue Corneal Topography System,” Optom. Vision Sci. 74, 899–905 (1997). [CrossRef]
  50. S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vision Sci. 74, 945–962 (1997). [CrossRef]
  51. S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vision Sci. 74, 931–944 (1997). [CrossRef]
  52. R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997). [CrossRef]
  53. J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991). [PubMed]
  54. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  55. R. Mandell, “A guide to videokeratography,” Int. Contact Lens Clin. 23, 205–228 (1996). [CrossRef]
  56. R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK, Thorofare, N.J., 1993), pp. 197–204.
  57. D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.
  58. D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).
  59. F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.
  60. L. N. Thibos, R. A. Applegate, “Assessment of optical quality,” in Customized Corneal Ablation and Super Vision, S. M. MacRae, R. R. Krueger, R. A. Applegate, eds. (SLACK, Thorofare, N.J., 2001), pp. 67–78.
  61. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003). [CrossRef]
  62. American National Standard for the Safe Use of Lasers (Laser Institute of America, Orlando, Fla., 2000).
  63. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997). [CrossRef]
  64. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, UK, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited