OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 770–776

Fringe pattern of the field diffracted by axicons

A. E. Martirosyan, C. Altucci, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa  »View Author Affiliations

JOSA A, Vol. 21, Issue 5, pp. 770-776 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The far-field intensity pattern of laser beams diffracted by axicons is extensively characterized both theoretically and experimentally. The regular structure of the pattern, consisting of high-contrast fringes, is explained. The experimental results have been interpreted by representing the diffracted field as generated by an extended virtual source shaped as a circle centered on the optical axis of the incident laser beam. The simulations include modifications to the diffraction pattern arising from the laser radiation diffraction limit at the axicon tip, and they reproduce well the measured intensity profile at different distances from the axicon.

© 2004 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics
(080.2720) Geometric optics : Mathematical methods (general)
(140.3300) Lasers and laser optics : Laser beam shaping

Original Manuscript: July 11, 2003
Revised Manuscript: December 18, 2003
Manuscript Accepted: December 18, 2003
Published: May 1, 2004

A. E. Martirosyan, C. Altucci, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa, "Fringe pattern of the field diffracted by axicons," J. Opt. Soc. Am. A 21, 770-776 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Y. Lit, “Image formation of a reflecting cone for an off-axis source,” J. Opt. Soc. Am. 60, 1001–1006 (1970). [CrossRef]
  2. A. Vasura, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef]
  3. C. Altucci, R. Bruzzese, D. D’Antuoni, C. de Lisio, S. Solimeno, “Harmonic generation in gases by use of Bessel-Gauss laser beams,” J. Opt. Soc. Am. B 17, 34–42 (2000). [CrossRef]
  4. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  5. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. 50, 166–169 (1960). [CrossRef]
  6. E. N. Leith, G. Collins, I. Khoo, T. Wynn, “Correlation image formation with an axicon,” J. Opt. Soc. Am. 70, 141–145 (1980). [CrossRef]
  7. L. W. Casperson, M. S. Shekhani, “Air breakdown in a radial-mode focusing element,” Appl. Opt. 19, 104–108 (1974). [CrossRef]
  8. J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  9. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  10. M. V. Pérez, C. Gómez-Reino, J. M. Cuadrando, “Diffraction patterns and zone plates produced by thin linear axicon,” Opt. Acta 33, 1161–1176 (1986). [CrossRef]
  11. V. E. Peet, “Resonantly enhanced multiphoton ionization of xenon in Bessel beams,” Phys. Rev. A 53, 3679–3682 (1996). [CrossRef] [PubMed]
  12. V. E. Peet, R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56, 1613–1620 (1997). [CrossRef]
  13. C. Altucci, R. Bruzzese, C. de Lisio, A. Porzio, S. Solimeno, V. Tosa, “Diffractionless beams and their use for harmonic generation,” Opt. Lasers Eng. 37, 565–575 (2002). [CrossRef]
  14. V. Pasiskevicius, H. Karlsson, J. A. Tellefsen, F. Laurell, R. Butkus, A. Piskarskas, V. Smilgevicius, A. Stabinis, “Singly-resonant optical parametric oscillator in periodically poled KTiOPO4 pumped by a Bessel beam,” Opt. Lett. 25, 969–971 (2000). [CrossRef]
  15. I. Manek, Yu. B. Ovchinnikov, R. Grimm, “Generation of a hollow laser beam for atom trapping using an axicon,” Opt. Commun. 147, 67–70 (1998). [CrossRef]
  16. L. Cacciapuoti, M. de Angelis, G. Pierattini, L. Ricci, G. M. Tino, “Single-beam optical bottle for cold atoms using conical lenses,” Eur. Phys. J. D 14, 373–376 (2001). [CrossRef]
  17. R. Grunwald, U. Griebner, F. T. Schirschwitz, T. Jnibbering, T. Elsaesser, V. Kebbel, H.-J. Hartmann, W. Juptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981–983 (2000). [CrossRef]
  18. B. Dépret, Ph. Verkerk, D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002). [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).
  20. P.-A. Bélanger, M. Rioux, “Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam,” Appl. Opt. 17, 1080–1086 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited