OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 847–857

Green’s-function method for the analysis of propagation in holey fibers

Emmanouil G. Alivizatos, Ioannis D. Chremmos, Nikolaos L. Tsitsas, and Nikolaos K. Uzunoglu  »View Author Affiliations


JOSA A, Vol. 21, Issue 5, pp. 847-857 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000847


View Full Text Article

Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Green’s-function method is employed to provide a rigorous analysis to the propagation and coupling phenomena in holey fibers. The analysis is carried out for an arbitrary grid of circular air holes of the fiber guide, while the electromagnetic field is taken to be a vector quantity. Application of the Green’s-function concept leads to a coupled system of equations incorporating as unknowns the field expansion coefficients to cylindrical wave functions within the air holes. The propagation constants of the guided waves are computed accurately by determining the singular points of the corresponding system’s matrix. Field distribution and dispersion properties of guided modes as well as coupling phenomena between parallel-running holey fibers are investigated, and numerical results are presented.

© 2004 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides

Citation
Emmanouil G. Alivizatos, Ioannis D. Chremmos, Nikolaos L. Tsitsas, and Nikolaos K. Uzunoglu, "Green’s-function method for the analysis of propagation in holey fibers," J. Opt. Soc. Am. A 21, 847-857 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-5-847


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
  2. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
  3. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
  4. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18, 1031–1037 (2000).
  5. T. A. Birks, J. C. Knight, and P. St. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  6. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
  7. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003).
  8. Tao Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793–1807 (2003).
  9. Y. Kugawa, Y. Sun, and Z. Mahmood, “Regular boundary integral formulation for the analysis of open dielectric/optical waveguides,” IEEE Trans. Microwave Theory Tech. 44, 1441–1450 (1996).
  10. D. S. Jones, Theory of Electromagnetism (Pergamon, Oxford, UK, 1964).
  11. C. N. Capsalis and N. K. Uzunoglu, “Coupled wave propagation in closely spaced dielectric rod waveguides,” Int. J. Infrared Millim. Waves 7, 813–831 (1986).
  12. N. K. Uzunoglu, “Scattering from inhomogeneities inside a fiber waveguide,” J. Opt. Soc. Am. 71, 259–273 (1981).
  13. A. D. Yaghjian, “Electric dyadic Green’s function in the source region,” Proc. IEEE 68, 248–263 (1980).
  14. M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
  15. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  16. M. J. Steel, T. P. White, C. M. Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
  17. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited