OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 881–889

Dispersion properties of inhomogeneous nanostructures

Uriel Levy and Yeshaiahu Fainman  »View Author Affiliations

JOSA A, Vol. 21, Issue 5, pp. 881-889 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the dispersive properties of inhomogeneous nanostructures (INSs) composed of alternating layers of different materials. Analysis of the interaction between the propagating pulse and the INS provides modified dispersion characteristics. An approximate theoretical model predicting the dispersion properties of the INS is developed and compared with more accurate numeric computation results. It is shown that the dispersion coefficient can be engineered by controlling the spatial distribution of the pulse carrier, the geometry of the INS, and the refractive indices of the materials combined to construct the INS. Specifically, the dispersion coefficient can be engineered to yield various types of dispersion, including normal dispersion, anomalous dispersion, and zero dispersion. As such, the discussed INS can be useful for applications that will benefit from engineered dispersion management and control.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

Original Manuscript: October 10, 2003
Revised Manuscript: December 16, 2003
Manuscript Accepted: December 16, 2003
Published: May 1, 2004

Uriel Levy and Yeshaiahu Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. A 21, 881-889 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997). [CrossRef] [PubMed]
  2. I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, L. J. Missaggia, “Semiconductor-doped-silica saturable-absorber films for solid-state laser mode locking,” Opt. Lett. 23, 1766–1768 (1998). [CrossRef]
  3. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  4. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. M. Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999). [CrossRef]
  5. F. Qeullen, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef]
  6. A. J. Antos, D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994). [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992).
  8. D. Mendlovic, Z. Zalevsky, P. Andreas, “A novel device for achieving negative or positive dispersion and its applications,” Optik (Stuttgart) 110, 45–50 (1999).
  9. C. K. Madsen, G. Lenz, T. N. Nielsen, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, “Integrated optical all pass filters for dispersion compensation,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 142–149.
  10. K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators,” J. Lightwave Technol. 20, 1485–1492 (2002). [CrossRef]
  11. I. Kaminow, T. Li, Optical Fiber Telecommunications IV, 4th ed. (Academic, San Diego, Calif., 2002), Part B, pp. 642–724.
  12. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 182–191.
  13. M. A. Porras, R. Borghi, M. Santarsiero, “Few-optical-cycle Bessel–Gauss pulsed beams in free space,” Phys. Rev. E 62, 5729–5737 (2000). [CrossRef]
  14. M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364–1366 (2001). [CrossRef]
  15. J. Lu, J. F. Greenleef, “Nondiffracting X waves—exact solutions to free space scalar wave equation and their finite aperture realization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19–31 (1992). [CrossRef]
  16. Z. Y. Liu, D. Y. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17–21 (1998). [CrossRef]
  17. C. J. R. Sheppard, “Bessel pulse beams and focus wave modes,” J. Opt. Soc. Am. A 18, 2594–2600 (2001). [CrossRef]
  18. W. Hu, H. Guo, “Ultrashort pulsed Bessel beams and spatially induced group-velocity dispersion,” J. Opt. Soc. Am. A 19, 49–53 (2002). [CrossRef]
  19. B. Lu, Z. Liu, “Propagation properties of ultrashort pulsed Bessel beams in dispersive media,” J. Opt. Soc. Am. A 20, 582–587 (2003). [CrossRef]
  20. I. Richter, P. C. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  21. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995). [CrossRef] [PubMed]
  22. R. Tyan, P. C. Sun, A. Scherer, Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761–763 (1996). [CrossRef] [PubMed]
  23. R. Tyan, A. Salvekar, Cheng, A. Scherer, F. Xu, P. C. Sun, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997). [CrossRef]
  24. F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996). [CrossRef] [PubMed]
  25. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996). [CrossRef] [PubMed]
  26. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  27. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  28. A. Taflove, S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method2nd ed. (Artech House, Norwood, Mass., 2000).
  29. D. W. Parther, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  30. K. D. Paulsen, “Finite-element solution of Maxwell’s equations with Helmholtz forms,” J. Opt. Soc. Am. A 11, 1434–1444 (1994). [CrossRef]
  31. H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef] [PubMed]
  32. G. Nordin, P. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999). [CrossRef] [PubMed]
  33. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using singlematerial fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999). [CrossRef]
  34. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  35. C. Gu, P. Yeh, “Form birefringence dispersion in periodic layered media,” Opt. Lett. 21, 504–506 (1996). [CrossRef] [PubMed]
  36. M. Bass, E. W. V. Stryland, D. R. Williams, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, 1995), Chap. 33, pp. 26, 33, 63, and 69.
  37. W. Nakagawa, R. C. Tyan, P. C. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18, 1072–1081 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited