## Fluorescence optical diffusion tomography using multiple-frequency data

JOSA A, Vol. 21, Issue 6, pp. 1035-1049 (2004)

http://dx.doi.org/10.1364/JOSAA.21.001035

Acrobat PDF (978 KB)

### Abstract

A method is presented for fluorescence optical diffusion tomography in turbid media using multiple-frequency data. The method uses a frequency-domain diffusion equation model to reconstruct the fluorescent yield and lifetime by means of a Bayesian framework and an efficient, nonlinear optimizer. The method is demonstrated by using simulations and laboratory experiments to show that reconstruction quality can be improved in certain problems through the use of more than one frequency. A broadly applicable mutual information performance metric is also presented and used to investigate the advantages of using multiple modulation frequencies compared with using only one.

© 2004 Optical Society of America

**OCIS Codes**

(100.3010) Image processing : Image reconstruction techniques

(100.3190) Image processing : Inverse problems

(100.6950) Image processing : Tomographic image processing

(170.3010) Medical optics and biotechnology : Image reconstruction techniques

(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

(290.3200) Scattering : Inverse scattering

(290.7050) Scattering : Turbid media

**Citation**

Adam B. Milstein, Jonathan J. Stott, Seungseok Oh, David A. Boas, R. P. Millane, Charles A. Bouman, and Kevin J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A **21**, 1035-1049 (2004)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-6-1035

Sort: Year | Journal | Reset

### References

- S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
- D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
- A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, and H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
- B. Ballou, G. W. Fisher, T. R. Hakala, and D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
- R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, and G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
- J. A. Reddy and P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
- J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
- U. Mahmood, C. Tung, J. A. Bogdanov, and R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
- K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
- V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
- A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
- J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
- M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
- E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
- R. Roy and E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
- M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
- D. Paithankar, A. Chen, B. Pogue, M. Patterson, and E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
- H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
- J. Chang, H. L. Graber, and R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
- V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
- A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
- E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10, 1557–1562 (2002).
- J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
- J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
- A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
- S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source–detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
- F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
- V. Ntziachristos, J. Culver, M. Holboke, A. G. Yodh, and B. Chance, “Optimal selection of frequencies for diffuse optical tomography,” in Biomedical Topical Meetings, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 475–477.
- C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).
- T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
- R. F. Wagner, D. G. Brown, and M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
- M. Fuderer, “The information content of MR images,” IEEE Trans. Med. Imaging 7, 368–380 (1988).
- L. Shao, A. O. Hero, W. L. Rogers, and N. H. Clinthorne, “The mutual information criterion for SPECT aperture evaluation and design,” IEEE Trans. Med. Imaging 8, 322–336 (1989).
- A. O. Hero and L. Shao, “Information analysis of single photon emission computed tomography with count losses,” IEEE Trans. Med. Imaging 9, 117–127 (1990).
- J. P. Culver, V. Ntziachristos, M. J. Holbrooke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
- H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
- J. Stott and D. A. Boas, “A practical comparison between time-domain and frequency-domain diffusive optical imaging systems,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 626–628.
- T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression (Prentice Hall, Englewood Cliffs, N.J., 1971).
- S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
- J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
- J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
- C. A. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
- K. Sauer and C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
- E. K. P. Chong and S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).
- R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
- S. S. Saquib, C. A. Bouman, and K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
- M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
- R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
- M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, Philadelphia, Pa., 1998).
- A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer—Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
- D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001).
- J. J. Stott, J. P. Culver, S. R. Arridge, and D. A. Boas, “Optode positional calibration in diffuse optical tomography,” Appl. Opt. 42, 3154–3162 (2003).
- N. Iftimia and H. Jiang, “Quantitative optical image reconstructions of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.