OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1066–1072

Finite-difference time-domain calculations of a liquid-crystal-based switchable Bragg grating

Bin Wang, Xinghua Wang, and Philip J. Bos  »View Author Affiliations


JOSA A, Vol. 21, Issue 6, pp. 1066-1072 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001066


View Full Text Article

Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polymer-wall-confined transmissive switchable liquid crystal grating is proposed and investigated by two-dimensional finite-difference time-domain optical calculation and liquid-crystal-director calculation, to our knowledge for the first time. The results show how to obtain optimized conditions for high diffraction efficiency by adjusting the liquid crystal parameters, grating geometric structure, and applied voltages. The light propagation direction and efficiency can be accurately calculated and visualized concurrently.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.3710) Materials : Liquid crystals
(230.1950) Optical devices : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

Citation
Bin Wang, Xinghua Wang, and Philip J. Bos, "Finite-difference time-domain calculations of a liquid-crystal-based switchable Bragg grating," J. Opt. Soc. Am. A 21, 1066-1072 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-6-1066


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Vol. 7 of Liquid Crystals, Display and Laser Materials, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic, San Diego, Calif., 2001), Chap. 2, pp. 67–102.
  2. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
  3. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, G. Dougherty, and R. L. Sutherland, “Morphology of aniosotropic polymer-dispersed liquid crystal and the monomer functionality,” J. Polym. Sci. Part B Polym. Phys. 35, 2825–2833 (1997).
  4. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
  5. K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (hpdlc) with high reflection efficiency,” 38, 277–278 (1999).
  6. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  7. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
  8. C. D. Hoke and P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2304 (2000).
  9. B. Wang, J. E. Anderson, C. D. Hoke, D. B. Chung, and P. J. Bos, “Long term bistable twisted nematic liquid crystal display and its computer simulations,” Jpn. J. Appl. Phys. 41, 2939–2943 (2002).
  10. J. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulation Software and Technology Guide (Artech House, Boston, Mass., 2001).
  11. P. G. de Gennes and J. Prost, The Physics of Liquid Crystal (Oxford Science, Oxford, UK, 1993).
  12. D. W. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. London Ser. A 309, 203–216 (1983).
  13. H. Mori, E. C. Gartland, Jr., J. R. Kelly, and P. J. Bos, “Multidimensional director modeling using the q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes,” Jpn. J. Appl. Phys. 38, 135–146 (1999).
  14. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
  17. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal display by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
  18. C. M. Titus, P. J. Bos, J. R. Kelly, and E. C. Gartland, “Comparison of analytical calculations to finite-difference time-domain simulations of one-dimensional spatially varying anisotropic liquid crystal structures,” Jpn. J. Appl. Phys. 38, 1488–1494 (1999).
  19. A. Yefet and P. G. Petropoulos, “A staggered fourth-order accuracy explicit finite difference scheme for the time-domain Maxwell’s equations,” J. Comput. Phys. 168, 286–315 (2001).
  20. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  22. C. M. Titus, “Refractive and diffractive liquid crystal beam steering devices,” Ph.D. dissertation (Kent State University, Kent, Ohio, 2000).
  23. E. E. Kriezis, S. K. Filippov, and S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited