OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1073–1081

Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique

Amit Hochman and Yehuda Leviatan  »View Author Affiliations

JOSA A, Vol. 21, Issue 6, pp. 1073-1081 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a source-model technique for the analysis of the strictly bound modes propagating in photonic crystal fibers that have a finite photonic bandgap crystal cladding and are surrounded by an air jacket. In this model the field is simulated by a superposition of fields of fictitious electric and magnetic current filaments, suitably placed near the media interfaces of the fiber. A simple point-matching procedure is subsequently used to enforce the continuity conditions across the interfaces, leading to a homogeneous matrix equation. Nontrivial solutions to this equation yield the mode field patterns and propagation constants. As an example, we analyze a hollow-core photonic crystal fiber. Symmetry characteristics of the modes are discussed and exploited to reduce the computational burden.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: October 30, 2003
Revised Manuscript: January 8, 2004
Manuscript Accepted: January 8, 2004
Published: June 1, 2004

Amit Hochman and Yehuda Leviatan, "Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique," J. Opt. Soc. Am. A 21, 1073-1081 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995). [CrossRef]
  2. P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  3. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, “Cladding-mode-resonances in air–silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000). [CrossRef]
  4. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  5. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  6. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  7. D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994). [CrossRef]
  8. K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003). [CrossRef]
  9. Z. Altman, H. Cory, Y. Leviatan, “Cutoff frequencies of dielectric waveguides using the multifilament current model,” Microwave Opt. Technol. Lett. 3, 294–295 (1990). [CrossRef]
  10. X. E. Lin, “Photonic band gap fiber accelerator,” Phys. Rev. ST Accel. Beams 4, 051301 (2001). [CrossRef]
  11. Y. Leviatan, A. Boag, A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies—theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988). [CrossRef]
  12. Y. Leviatan, “Analytic continuation considerations when using generalized formulations for scattering problems,” IEEE Trans. Antennas Propag. 38, 1259–1263 (1990). [CrossRef]
  13. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  14. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).
  15. Yu. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Models of electromagnetic scattering problems based on discrete sources method,” in Generalized Multipole Techniques for Electromagnetic and Light Scattering, T. Wriedt, ed. (Elsevier, Amsterdam, 1999), Chap. 4.
  16. B. N. Datta, Numerical Linear Algebra and Applications (Brooks-Cole, Pacific Grove, Calif., 1994).
  17. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides—I: Summary of results,” IEEE Trans. Microwave Theory Tech. 23, 421–429 (1975). [CrossRef]
  18. H. Shigesawa, “The equivalent source model,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, Norwood, Mass., 1990), Chap. 6.
  19. A. A. Maradudin, A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41, 275–284 (1994). [CrossRef]
  20. R. Lehoucq, D. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited