OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1140–1147

Reference structure tomography

David J. Brady, Nikos P. Pitsianis, and Xiaobai Sun  »View Author Affiliations


JOSA A, Vol. 21, Issue 7, pp. 1140-1147 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001140


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reference structure tomography (RST) uses multidimensional modulations to encode mappings between radiating objects and measurements. RST may be used to image source-density distributions, estimate source parameters, or classify sources. The RST paradigm permits scan-free multidimensional imaging, data-efficient and computation-efficient source analysis, and direct abstraction of physical features. We introduce the basic concepts of RST and illustrate the use of RST for multidimensional imaging based on a geometric radiation model.

© 2004 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems

History
Original Manuscript: October 28, 2003
Revised Manuscript: February 27, 2004
Manuscript Accepted: February 27, 2004
Published: July 1, 2004

Citation
David J. Brady, Nikos P. Pitsianis, and Xiaobai Sun, "Reference structure tomography," J. Opt. Soc. Am. A 21, 1140-1147 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-7-1140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).
  2. R. Gardner, Geometric Tomography (Cambridge U. Press, Cambridge, UK, 1995).
  3. G. Herman, A. Kuba, eds., Discrete Tomography (Birkhäuser, Boston, Mass., 1999).
  4. E. E. Fenimore, “Coded aperture imaging—predicted performance of uniformly redundant arrays,” Appl. Opt. 17, 3562–3570 (1978). [CrossRef] [PubMed]
  5. A. R. Gourlay, J. B. Stephen, “Geometric coded-aperture masks,” Appl. Opt. 22, 4042–4047 (1983). [CrossRef]
  6. G. Indebetouw, W. P. Shing, “Scanning optical reconstruction of coded aperture images,” Appl. Phys. B Photophys. Laser Chem. 27, 69–76 (1982). [CrossRef]
  7. M. Matsuoka, Y. Kohmura, “A new concept of x-ray microscopes with a coded-aperture imaging mask,” Jpn. J. Appl. Phys., Part 1 34, 372–373 (1995). [CrossRef]
  8. K. A. Nugent, “Coded-aperture imaging—a Fourier space analysis,” Appl. Opt. 26, 563–569 (1987). [CrossRef] [PubMed]
  9. G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. Sect. A 221, 33–40 (1984). [CrossRef]
  10. G. K. Skinner, T. J. Ponman, “Inverse problems in x-ray and gamma-ray astronomical imaging,” Inverse Probl. 11, 655–676 (1995). [CrossRef]
  11. R. F. Wagner, D. G. Brown, C. E. Metz, “On the multiplex advantage of coded source aperture photon imaging,” in Digital Radiography, W. R. Brody, ed., Proc. SPIE314, 72–76 (1981). [CrossRef]
  12. L. I. Yin, J. I. Trombka, S. M. Seltzer, “Three-dimensional imaging of x-ray and gamma-ray objects in real time,” Appl. Opt. 19, 2952–2956 (1980). [CrossRef] [PubMed]
  13. E. de la Fortelle, G. Bricogne, “Maximum-likelihood, heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods,” in Macromolecular Crystallography, Part A, Vol. 276 of Methods in Enzymology, J. Abelson, ed. (Academic, San Diego, Calif., 1997), pp. 472–494.
  14. R. W. Grosse-Kunstleve, A. T. Brunger, “A highly automated heavy-atom search procedure for macromolecular structures,” Acta Crystallogr. D 55, 1568–1577 (1999). [CrossRef] [PubMed]
  15. U. Heinemann, G. Illing, H. Oschkinat, “High-throughput three-dimensional protein structure determination,” Curr. Opin. Biotechnol. 12, 348–354 (2001). [CrossRef] [PubMed]
  16. T. V. Ohalloran, S. J. Lippard, T. J. Richmond, A. Klug, “Multiple heavy-atom reagents for macromolecular x-ray structure determination—application to the nucleosome core particle,” J. Mol. Biol. 194, 705–712 (1987). [CrossRef]
  17. P. M. Conn, Confocal Microscopy, Vol. 307 of Methods in Enzymology, J. Abelson, ed. (Academic, San Diego, Calif., 1999).
  18. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).
  19. C. Sheppard, D. Shotton, “Confocal Laser Scanning Microscopy,” No. 38 of Royal Microscopical Society Microscopy Handbooks Series (Oxford BIOS Scientific, New York, 1997).
  20. D. Shotton, ed., Electronic Light Microscopy: the Principles and Practice of Video-Enhanced Contrast, Digital Intensified Fluorescence, and Confocal Scanning Light Microscopy, Techniques in Modern Biomedical Microscopy (Wiley-Liss, New York, 1993).
  21. T. Wilson, Confocal Microscopy (Academic, New York, 1990).
  22. W. Denk, J. H. Strickler, W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  23. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992). [CrossRef]
  24. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  25. D. L. Marks, R. A. Stack, D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999). [CrossRef]
  26. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999). [CrossRef] [PubMed]
  27. P. Potuluri, M. R. Fetterman, D. J. Brady, “High-depth-of-field microscopic imaging using an interferometric camera,” Opt. Express 8, 624–630 (2001). [CrossRef] [PubMed]
  28. D. L. Marks, D. J. Brady, “Three-dimensional source reconstruction with a scanned pinhole camera,” Opt. Lett. 23, 820–822 (1998). [CrossRef]
  29. M. R. Fetterman, E. Tan, L. Ying, R. A. Stack, D. L. Marks, S. Feller, E. Cull, J. M. Sullivan, D. C. Munson, S. T. Thoroddsen, D. J. Brady, “Tomographic imaging of foam,” Opt. Express 7, 186–197 (2000). [CrossRef] [PubMed]
  30. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001). [CrossRef]
  31. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999). [CrossRef]
  32. G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999). [CrossRef]
  33. W. H. Liu, D. Psaltis, G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002). [CrossRef]
  34. P. Potuluri, U. Gopinathan, J. R. Adleman, D. J. Brady, “Lensless sensor system using a reference structure,” Opt. Express 11, 965–974 (2003). [CrossRef] [PubMed]
  35. P. Potuluri, M. Xu, D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003). [CrossRef] [PubMed]
  36. U. Gopinathan, D. J. Brady, N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express 11, 2142–2152 (2003). [CrossRef] [PubMed]
  37. A. Sinha, D. J. Brady, “Size and shape recognition using measurement statistics and random 3D reference structures,” Opt. Express 11, 2606–2618 (2003). [CrossRef] [PubMed]
  38. R. Tsai, P. Burchard, L.-T. Cheng, S. Osher, G. Sapiro, “Dynamic visibility in a level set-based implicit frame work,” , UCLA Computational and Applied Mathematics Reports (University of California, Los Angeles, Los Angeles, Calif., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited