OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1161–1171

Three-dimensional plasma field reconstruction with multiobjective optimization emission spectral tomography

Xiong Wan, Shenglin Yu, Guiying Cai, Yiqing Gao, and Jianglin Yi  »View Author Affiliations

JOSA A, Vol. 21, Issue 7, pp. 1161-1171 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel emission spectral tomography algorithm based on multiobjective optimization is proposed. Its reconstruction results for asymmetrical emission coefficient fields are studied with computer simulation. The results show that this algorithm provides a significant improvement in reconstruction precision and convergence over traditional algorithms and is suitable for real-time reconstruction of an emission-coefficient field with incomplete data. In an experiment of the argon-arc plasma diagnosis, we adopted this algorithm and the spectrum relative-intensity method to obtain the three-dimensional distributions of temperature, ionization coefficient, and electron (ion) and atom densities.

© 2004 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.6950) Image processing : Tomographic image processing
(300.2140) Spectroscopy : Emission
(300.6350) Spectroscopy : Spectroscopy, ionization

Original Manuscript: October 24, 2003
Revised Manuscript: January 20, 2004
Manuscript Accepted: January 20, 2004
Published: July 1, 2004

Xiong Wan, Shenglin Yu, Guiying Cai, Yiqing Gao, and Jianglin Yi, "Three-dimensional plasma field reconstruction with multiobjective optimization emission spectral tomography," J. Opt. Soc. Am. A 21, 1161-1171 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Wan, Y. Gao, S. Yu, “Study of limited-view tomography alogrithms for plasma diagnostics,” in Optical Design and Testing, Z. Weng, J. M. Sasian, Y. Wang, eds., Proc. SPIE4927, 625–632 (2002). [CrossRef]
  2. Y. Gao, “Reconstruction of arc temperature fields by projection space iteration reconstruction-reprojection,” Acta Photon. Sin. 30, 196–200 (2001).
  3. Y. Gao, “3-D arc temperature diagnosis with more computed tomography,” Acta Opt. Sin. 18, 376–380 (1998).
  4. G. P. Montgomery, D. L. Reuss, “Effects of refraction on axisymmetric flame temperature measured by holographic interferometry,” Appl. Opt. 21, 1373–1380 (1982). [CrossRef] [PubMed]
  5. G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988). [CrossRef] [PubMed]
  6. D. W. Sweeney, C. M. Vest, “Measurement of three-dimensional temperature fields above heated surfaces by holographic interferometry,” Int. J. Heat Mass Transfer 17, 1443–1454 (1974). [CrossRef]
  7. D. W. Sweeney, C. M. Vest, “Reconstruction of three-dimensional refractive index field from multidirectional interferometric data,” Appl. Opt. 12, 2649–2664 (1973). [CrossRef] [PubMed]
  8. R. Synder, L. Hesselink, “Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade,” Appl. Opt. 23, 3650–3656 (1984). [CrossRef]
  9. M. Watanabe, A. Abe, R. T. Casey, K. Takayama, “Holographic interferometric observation of shock wave phenomena,” in Laser Interferometry IV: Computer-Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE1553, 418–426 (1992). [CrossRef]
  10. Y. Takakura, S. Ogawa, Y. Wada, “Transonic wind-tunnel flow about a fully configured aircraft,” AIAA J. 33, 557–559 (1995). [CrossRef]
  11. A. J. Senol, G. L. Romine, “Three dimensional refraction-diffraction of EM waves through rocket exhaust plumes,” in Proceedings of the AIAA 17th Fluid Dynamics, Plasma Dynamics and Lasers Conference (Institute of Aeronautics and Astronautics, Reston, Va., 1984), paper 84-1597.
  12. D. L. Reuss, P. H. Schultz, “Interferometric temperature measurements of a flame in a cylindrical tube using holography,” Appl. Opt. 26, 1661–1667 (1987). [CrossRef] [PubMed]
  13. C. Soller, R. Wenskus, P. Middendorf, G. E. A. Meier, F. Obermeier, “Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow,” Appl. Opt. 33, 2921–2932 (1994). [CrossRef] [PubMed]
  14. D. P. Towers, C. E. Towers, P. J. Bryanston-Cross, K. Fry, A. E. Harris, “Visualization and analysis of three-dimensional transonic flows by holographic interferometry,” in Laser Interferometry IV: Computer-Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE1553, 388–403 (1992). [CrossRef]
  15. T. S. Melnikova, V. V. Pickalov, “Tomographic measurements of temperature fields in non-stationary arc plasma,” Beitr. Plasmaphys. 24, 431–445 (1984). [CrossRef]
  16. N. Iwama, H. Yoshida, H. Takimoto, Y. Shen, S. Takamura, T. Tsukishima, “Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation,” Appl. Phys. Lett. 54, 502–504 (1989). [CrossRef]
  17. H. Uchiyama, T. Takezawa, K. Abe, S. Haku, M. Nakajima, S. Yuta, “Proposal on infrared rays emission CT,” Trans. Inst. Electron. Commun. Eng. Jpn., Part D 67, 1021–1026 (1984).
  18. H. Uchiyama, M. Nakajima, S. Yuta, “Measurement of flame temperature distribution by IR emission computed tomography,” Appl. Opt. 24, 4111–4116 (1985). [CrossRef] [PubMed]
  19. H. Uchiyama, K. Kazahaya, M. Nakajima, M. Mizomoto, S. Yuta, “Attenuation correction for infrared rays emission CT,” Trans. Inst. Electron. Commun. Eng. Jpn., Part D 68, 2073–2081 (1985).
  20. M. Hino, T. Aono, M. Nakajima, S. Yuta, “Light emission computed tomography system for plasma diagnostics,” Appl. Opt. 26, 4742–4746 (1987). [CrossRef] [PubMed]
  21. L. I. Poplevina, I. M. Tokmulin, G. N. Vishnyakov, “Emission spectral tomography of multijet plasma flow,” in Inverse Optics III, M. A. Fiddy, ed., Proc. SPIE2241, 90–98 (1994). [CrossRef]
  22. X. Wan, Y. Gao, Y. Wang, “3-D flame temperature field reconstruction with multiobjective neural network,” Chin. Opt. Lett. 1, 78–81 (2003).
  23. D. Verhoeven, “Limited-data computed tomography algorithms for the physical sciences,” Appl. Opt. 32, 3736–3754 (1993). [CrossRef] [PubMed]
  24. X. Wan, Y. Gao, Q. Wang, S. Le, S. Yu, “Limited-angle optical computed tomography algorithms,” Opt. Eng. (Bellingham) 42, 2659–2669 (2003). [CrossRef]
  25. H. N. Olsen, C. D. Maldonado, G. D. Duckworth, “A numerical method for obtaining internal emission coefficients from externally measured spectral intensities of asymmetrical plasmas,” J. Quant. Spectrosc. Radiat. Transf. 8, 1419–1430 (1968). [CrossRef]
  26. B. R. Myers, M. A. Levine, “Two-dimensional spectral line emission reconstruction as a plasma diagnostic,” Rev. Sci. Instrum. 49, 610–616 (1978). [CrossRef] [PubMed]
  27. N. Sebald, “Measurement of the temperature and flow fields of the magnetically stabilized cross-flow N2 arc,” Appl. Phys. 21, 221–236 (1980). [CrossRef]
  28. K. M. Hanson, G. W. Wecksung, “Local basis-function approach to computed tomography,” Appl. Opt. 24, 4028–4039 (1985). [CrossRef] [PubMed]
  29. S. Bahl, J. A. Liburdy, “Three-dimensional image reconstruction using interferometric data from a limited field of view with noise,” Appl. Opt. 30, 4218–4226 (1991). [CrossRef] [PubMed]
  30. Y. Wang, W. Lu, “Multiobjective decision-making approach to image reconstruction from projections,” J. Opt. Soc. Am. A 8, 1649–1656 (1991). [CrossRef]
  31. Y. Wang, F. M. Wahl, “Multiobjective neural network for image reconstruction,” IEE Proc. Vision Image Signal Process. 144, 233–236 (1997). [CrossRef]
  32. S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imaging MI-4, 65–71 (1985). [CrossRef]
  33. S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987). [CrossRef]
  34. O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988). [CrossRef]
  35. J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983). [CrossRef]
  36. E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. SSC-4, 227–241 (1968). [CrossRef]
  37. B. R. Frieden, “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, 511–518 (1972). [CrossRef] [PubMed]
  38. S. F. Gull, T. J. Newton, “Maximum entropy tomography,” Appl. Opt. 25, 156–160 (1986). [CrossRef] [PubMed]
  39. E. S. Meinel, “Maximum-entropy image restoration: Lagrange and recursive techniques,” J. Opt. Soc. Am. A 5, 25–29 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited