OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1198–1206

Analysis and design of a concave diffraction grating with total-internal-reflection facets by a hybrid diffraction method

Zhimin Shi, Jian-Jun He, and Sailing He  »View Author Affiliations


JOSA A, Vol. 21, Issue 7, pp. 1198-1206 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001198


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel hybrid diffraction method is introduced to simulate the diffraction and imaging of a planar-integrated concave grating that has total internal reflection (TIR) facets. The Kirchhoff–Huygens diffraction formula is adopted to simulate the propagation of the lightwave field in the free-propagation region, and a rigorous coupled-wave analysis is used to calculate the polarization-dependent diffraction by the grating. The hybrid diffraction method can be used to analyze accurately the imaging properties as well as the polarization-dependent diffraction characteristics of a concave grating. The dependence of several merit parameters of a concave grating with TIR facets on its basic geometric parameters is studied. Compared with one with metallic echelle facets, a concave grating with TIR facets shows a much lower polarization-dependent loss. Since more performance specifications can be considered in the design of a concave grating than with the conventional scalar method, design error can be reduced greatly with the present hybrid diffraction method.

© 2004 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(250.5300) Optoelectronics : Photonic integrated circuits
(260.6970) Physical optics : Total internal reflection

History
Original Manuscript: October 28, 2003
Revised Manuscript: February 10, 2004
Manuscript Accepted: February 10, 2004
Published: July 1, 2004

Citation
Zhimin Shi, Jian-Jun He, and Sailing He, "Analysis and design of a concave diffraction grating with total-internal-reflection facets by a hybrid diffraction method," J. Opt. Soc. Am. A 21, 1198-1206 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-7-1198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996). [CrossRef]
  2. C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stall, “Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP,” IEEE Photon. Technol. Lett. 4, 108–110 (1992). [CrossRef]
  3. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delâge, M. Davies, “Integrated polarisation compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999). [CrossRef]
  4. S. Y. Sadov, K. A. McGreer, “Polarization dependence of diffraction gratings that have total internal reflection facets,” J. Opt. Soc. Am. A 17, 1590–1594 (2002). [CrossRef]
  5. M. S. D. Smith, K. A. McGreer, “Diffraction gratings utilizing total internal reflection facets in Littrow configuration,” IEEE Photon. Technol. Lett. 11, 84–86 (1999). [CrossRef]
  6. M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  7. A. C. McGreer, “Diffraction from concave gratings in planar waveguides,” IEEE Photon. Technol. Lett. 7, 324–326 (1995). [CrossRef]
  8. J.-J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, E. S. Koteles, “Sources of crosstalk in grating based monolithic integrated wavelength demultiplexers,” in Application of Photonic Technology 3: Closing the Gap between Theory, Development and Application, G. A. Lampropoulos, R. A. Lessard, eds., Proc. SPIE3491, 593–598 (1998).
  9. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  10. S.-D. Wu, E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. A 19, 2018–2029 (2002). [CrossRef]
  11. D. Chowdhury, “Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers,” IEEE J. Sel. Top. Quantum Electron. 6, 233–239 (2000). [CrossRef]
  12. W. J. Tsay, D. M. Pozar, “Application of the FDTD technique to periodic problems in scattering and radiation,” IEEE Microwave Guid. Wave Lett. 3, 250–252 (1993). [CrossRef]
  13. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  16. P. Lalanne, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  17. E. Popov, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  18. R. Marz, C. Cremer, “On the theory of planar spectrographs,” J. Lightwave Technol. 10, 2017–2022 (1992). [CrossRef]
  19. K. A. McGreer, “Theory of concave gratings based on a recursive definition of facet positions,” Appl. Opt. 35, 5904–5910 (1996). [CrossRef] [PubMed]
  20. J.-J. He, B. Lamontagne, A. Delâge, L. Erickson, M. Davies, E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998). [CrossRef]
  21. L. Shen, S. He, “Analysis for the convergence problem of the plane-wave expansion method for photonic crystals,” J. Opt. Soc. Am. A 19, 1021–1024 (2002). [CrossRef]
  22. R. G. Hunsperger, Integrated Optics: Theory and Technology, 2nd ed. (Springer-Verlag, Berlin, 1984), p. 89.
  23. K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000), p. 252.
  24. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1965).
  25. H. Haus, Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, N.J., 1984), p. 48.
  26. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, New York, 1980), p. 179.
  27. Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002). [CrossRef]
  28. Z. Shi, J.-J. He, S. He, “An analytic method for designing passband flattened DWDM demultiplexers using spatial phase modulation,” J. Lightwave Technol. 21, 2314–2321 (2003). [CrossRef]
  29. L. O. Lierstuen, A. Sv. Sudbo, “Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics,” Appl. Opt. 34, 1024–1028 (1995). [CrossRef] [PubMed]
  30. A. Melloni, P. Monguzzi, R. Costa, M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A 20, 130–137 (2003). [CrossRef]
  31. T. Ikegami, “Reflectivity of mode at facet on oscillation mode in double-heterostructure injection lasers,” IEEE J. Quantum Electron. QE-8, 470–476 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited