OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1207–1220

Synthesis of birefringent reflective gratings

Ole Henrik Waagaard and Johannes Skaar  »View Author Affiliations


JOSA A, Vol. 21, Issue 7, pp. 1207-1220 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001207


View Full Text Article

Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The layer-peeling method for reconstruction of fiber and waveguide gratings is extended to the case of birefringent reflective gratings with polarization-dependent background index and polarization-dependent effective index contrast. Using a discrete grating model, we characterize the set of possible reflection and transmission Jones matrices and show that for a given wavelength, the total structure can be represented by a discrete reflector sandwiched between two retardation sections. In reflection the discrete reflector acts as a partial polarizer. A method for designing birefringent gratings is developed and tested numerically.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1480) Optical devices : Bragg reflectors
(230.5440) Optical devices : Polarization-selective devices
(290.3200) Scattering : Inverse scattering

Citation
Ole Henrik Waagaard and Johannes Skaar, "Synthesis of birefringent reflective gratings," J. Opt. Soc. Am. A 21, 1207-1220 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-7-1207


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Yamada and K. Saduka, “Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
  2. J. Skaar and O. H. Waagaard, “Design and characterization of finite length fiber gratings,” IEEE J. Quantum Electron. 39, 1238–1245 (2003).
  3. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
  4. J. Skaar, L. Wang, and T. Erdogan, “On the Synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
  5. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. SPIE 1516, 185–199 (1991).
  6. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters,” J. Opt. Soc. Am. B 27, 1548–1550 (1991).
  7. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
  8. S. Pereira, J. E. Sipe, R. E. Slusher, and S. Spälter, “Enhanced and suppressed birefringence in fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 1509–1515 (2002).
  9. P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevaque, S. Boj, and B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
  10. L. Bjerkan, K. Johannessen, and X. Guo, “Measurements of Bragg grating birefringence due to transverse compressive forces,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 60–63.
  11. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
  12. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
  13. A.-P. Zhang, B.-O. Guan, X.-M. Tao, and H.-Y. Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
  14. M.-J. Li and S. I. Najafi, “Polarization dependence of grating-assisted waveguide Bragg reflectors,” Appl. Opt. 32, 4517–4521 (1993).
  15. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
  16. E. Rønnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
  17. D. Sandel, R. Noé, G. Heise, and B. Borchert, “Optical network analysis and longitudinal structure characterization of fiber Bragg grating,” J. Lightwave Technol. 16, 2435–2442 (1998).
  18. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1983), Chap. 6.4.
  19. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999), Chap. 5.
  20. A. Buryak, “Iterative schema for ‘mixed’ scattering problems,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, postconference digest, Vol. 94 of OSA Topic in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).
  21. L. V. Ahlfors, Complex Analysis (McGraw-Hill International Editions, 1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited