OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1241–1250

Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers

Daniel Beom Soo Soh, Johan Nilsson, Seungin Baek, Christophe Codemard, Yoonchan Jeong, and Valery Philippov  »View Author Affiliations

JOSA A, Vol. 21, Issue 7, pp. 1241-1250 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We calculate the modal power distribution of a randomly and linearly polarized (LP) multimode beam inside a cylindrical fiber core from knowledge of spatial-intensity profiles of a beam emitted from the fiber. We provide an exact analysis with rigorous proofs that forms the basis for our calculations. The beam from the fiber end is collimated by a spherical lens with a specific focal length. The original LP-mode basis is transformed by the spherical lens and forms another orthogonal basis that describes the free-space beam. By using this basis, we calculate the modal power distribution from the mutual-intensity profile. This is acquired by adopting a well-known mutual-intensity-profile-retrieving technique based on measurements of the intensity patterns several times after two orthogonal cylindrical lenses with varying separation. The feasibility of our decomposition algorithm is demonstrated with simulations.

© 2004 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2310) Fiber optics and optical communications : Fiber optics

Original Manuscript: October 23, 2003
Revised Manuscript: January 29, 2004
Manuscript Accepted: January 29, 2004
Published: July 1, 2004

Daniel Beom Soo Soh, Johan Nilsson, Seungin Baek, Christophe Codemard, Yoonchan Jeong, and Valery Philippov, "Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers," J. Opt. Soc. Am. A 21, 1241-1250 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B. C. McCollum, “Double-clad, offset core Nd fiber laser,” in Conference on Optical Fiber Sensors, New Orleans, January 25–28, 1988, Postdeadline paper PD5.
  2. L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Technol. 11, 1435–1446 (1993). [CrossRef]
  3. T. Weber, W. Luthy, H. P. Weber, V. Neuman, H. Berthou, G. Kotrotsios, J. P. Dan, H. E. Hintermann, “Cladding-pumped fiber laser,” IEEE J. Quantum Electron. 31, 326–329 (1995). [CrossRef]
  4. O. G. Leminger, G. K. Grau, “Nearfield-intensity and modal power distribution in multimode graded-index fibres,” Electron. Lett. 16, 678–679 (1980). [CrossRef]
  5. G. K. Grau, O. G. Leminger, “Relations between near-field and far-field intensities, radiance and modal power distribution of multimode graded-index fibres,” Appl. Opt. 20, 457–459 (1981). [CrossRef] [PubMed]
  6. A. R. Mickelson, M. Eriksrud, S. Aamlid, N. Ryen, “Role of the fusion splice in the concatenation problem,” J. Lightwave Technol. LT-2, 126–138 (1984). [CrossRef]
  7. A. R. Mickelson, M. Eriksrud, “Mode-continuum approximation in optical fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).
  8. D. Rittich, “Practicability of determining the modal power distribution by measured near and far fields,” J. Lightwave Technol. LT-3, 652–661 (1985). [CrossRef]
  9. F. Gori, M. Santarsiero, R. Borghi, G. Guattari, “Intensity-based modal analysis of partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998). [CrossRef]
  10. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  11. C. Elster, I. Weingartner, “Solution to the shearing problem,” Appl. Opt. 38, 5024–5031 (1999). [CrossRef]
  12. E. L. Lago, R. de la Fuente, “Wavefront sensing by diffracted beam interferometry,” J. Opt. A Pure Appl. Opt. 4, 299–302 (2002). [CrossRef]
  13. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, O. K. Ersory, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system—a comparison,” Appl. Opt. 33, 209–218 (1994). [CrossRef] [PubMed]
  14. W. Snyder, J. D. Love, Optical Waveguide Theory (Kluwer Academic, Boston, Mass., 1983).
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  16. K. A. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992). [CrossRef] [PubMed]
  17. M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  18. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
  19. J. Tu, S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997). [CrossRef]
  20. G. E. Healey, R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994). [CrossRef]
  21. J. Bertrand, P. Bertrand, “A tomographic approach to Wigner function,” Found. Phys. 17, 397–405 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited