OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1344–1361

Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations

Nandana D. Amarasinghe, Eugene C. Gartland, Jr., and Jack R. Kelly  »View Author Affiliations


JOSA A, Vol. 21, Issue 7, pp. 1344-1361 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001344


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider numerical modeling of the optical properties of devices typical of beam-steering devices based on liquid-crystal materials: two-dimensional, anisotropic and inhomogeneous dielectric properties, periodic in one dimension. A mathematical formulation of the system of second-order partial differential equations for the components of the time-harmonic electric field is discretized by using a finite-element method based on curl-conforming edge elements. The discrete equations are also interpreted as equivalent finite-difference equations. It is shown how the resulting large sparse complex system of linear algebraic equations can be solved by an iterative method with convergence accelerated by a preconditioner based on fast Fourier transforms. Benchmarking results and the application to a realistic problem are reported. The practical limitations of the approach and its advantages and disadvantages compared with other approaches are discussed.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: July 5, 2003
Revised Manuscript: January 26, 2004
Manuscript Accepted: January 26, 2004
Published: July 1, 2004

Citation
Nandana D. Amarasinghe, Eugene C. Gartland, and Jack R. Kelly, "Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations," J. Opt. Soc. Am. A 21, 1344-1361 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-7-1344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Rokushima, J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73, 901–908 (1983). [CrossRef]
  2. E. N. Glytsis, T. K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings,” J. Opt. Soc. Am. A 4, 2061–2080 (1987). [CrossRef]
  3. E. N. Glytsis, T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1394–1420 (1990). [CrossRef]
  4. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). [CrossRef]
  5. Em. E. Kriezis, S. J. Elston, “A wide angle beam propagation method for the analysis of tilted nematic liquid crystal structures,” J. Mod. Opt. 46, 1201–1212 (1999). [CrossRef]
  6. Em. E. Kriezis, S. J. Elston, “Light wave propagation in periodic tilted liquid crystal structures: a periodic beam propagation method,” Liq. Cryst. 26, 1663–1669 (1999). [CrossRef]
  7. Em. E. Kriezis, S. J. Elston, “A wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000). [CrossRef]
  8. A. A. Fuki, Yu. A. Kravtsov, O. N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, Amsterdam, 1998).
  9. J. A. Reyes, “Ray propagation in nematic droplets,” Phys. Rev. E 57, 6700–6705 (1998). [CrossRef]
  10. J. A. Reyes, “Ray propagation in anisotropic inhomogeneous media,” J. Phys. A 32, 3409–3418 (1999). [CrossRef]
  11. G. Panasyuk, J. Kelly, D. W. Allender, E. C. Gartland, “Geometric optics approach in liquid crystal films with three dimensional director variations,” Phys. Rev. E 67, 041702 (10 pages) ( 2003). [CrossRef]
  12. B. Witzigmann, P. Regli, W. Fichtner, “Rigorous electromagnetic simulation of liquid crystal displays,” J. Opt. Soc. Am. A 15, 753–757 (1998). [CrossRef]
  13. Em. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999). [CrossRef]
  14. Em. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000). [CrossRef]
  15. Em. E. Kriezis, S. J. Elston, “Numerical modelling of multi-dimensional liquid crystal optics: finite-difference time-domain method,” Mol. Cryst. Liq. Cryst. 359, 289–299 (2001). [CrossRef]
  16. C. M. Titus, P. J. Bos, J. R. Kelly, E. C. Gartland, “Comparison of analytical calculations to finite-difference time-domain simulations of one-dimensional spatially varying anisotropic liquid crystal structures,” J. Appl. Phys. 38, 1488–1494 (1999). [CrossRef]
  17. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26, 1188–1190 (2001). [CrossRef]
  18. G. Bao, D. C. Dobson, “Variational methods for diffractive optics modeling,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, W. Masters, eds. (SIAM, Philadelphia, Pa., 2001).
  19. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).
  20. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  21. A. F. Peterson, S. L. Ray, R. Mittra, Computational Methods for Electromagnetics (IEEE Press, Piscataway, N.J., 1998).
  22. M. Cessenat, Mathematical Methods in Electromagnetism (World Scientific, Singapore, 1996).
  23. J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems (Springer, Berlin, 2001).
  24. W. D. Murphy, V. Rokhlin, M. S. Vassiliou, “Solving electromagnetic scattering problems at resonance frequencies,” J. Appl. Phys. 67, 6061–6065 (1990). [CrossRef]
  25. X. Chen, A. Friedman, “Maxwell’s equations in a periodic structure,” Trans. Amer. Math. Soc. 323, 465–507 (1991).
  26. J.-C. Nédélec, F. Starling, “Integral-equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell equations,” SIAM J. Math. Anal. 22, 1679–1701 (1991). [CrossRef]
  27. H. Ammari, N. Bereux, J.-C. Nédélec, “Resonances for Maxwell’s equations in a periodic structure,” C. R. Acad. Sci. Paris Sér. I Math. 325, 211–215 (1997). [CrossRef]
  28. D. Givoli, Numerical Methods for Problems in Infinite Domains (Elsevier, Amsterdam, 1992).
  29. A. Taflove, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  30. R. Hiptmair, “Finite elements in computational electromagnetism,” Acta Numer. 11, 237–339 (2002). [CrossRef]
  31. K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations (Cambridge U. Press, Cambridge, UK, 1994).
  32. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  33. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1994).
  34. C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1995).
  35. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, Mass., 1996).
  36. P. Monk, “A finite element method for approximating the time-harmonic Maxwell equations,” Numer. Math. 63, 243–261 (1992). [CrossRef]
  37. P. Monk, “An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations,” J. Comput. Appl. Math. 47, 101–121 (1993). [CrossRef]
  38. K. H. Kim, S. B. Park, J.-U. Shim, J. Chen, J. H. Souk, “A novel wide viewing angle technology for AM-LCDs,” in Proceedings of the 4th International Display Workshops, Nagoya, Japan, 1997 (Society for Information Display, Japan Chapter, Tokyo, Japan, 1997), pp. 175–178.
  39. S. H. Lee, H. Y. Kim, T. K. Jung, I. C. Park, Y. H. Lee, B. G. Rho, J. S. Park, H. S. Park, “Wide viewing-angle homeotropic nematic liquid crystal display controlled by in-plane switching,” in Proceedings of the 4th International Display Workshops, Nagoya, Japan, 1997 (Society for Information Display, Japan Chapter, Tokyo, Japan, 1997), pp. 97–100.
  40. R. Kiefer, B. Weber, F. Windscheid, G. Baur, “In plane switching of nematic liquid crystals,” in Proceedings of Japan Display ’92 (Society for Information Display, Japan Chapter, Tokyo, Japan, 1992), pp. 547–550.
  41. W. Liu, J. Kelly, “Optical properties of a switchable diffraction grating,” Mol. Cryst. Liq. Cryst. 358, 199–208 (2001). [CrossRef]
  42. W. Liu, J. Kelly, J. Chen, “Electro-optical performance of a self-compensating vertically-aligned liquid crystal display mode,” Jpn. J. Appl. Phys. 38, 2779–2784 (1999). [CrossRef]
  43. N. D. Amarasinghe, “2-D liquid crystal optics via numerical solution of time-harmonic Maxwell equations,” M.S. thesis (Kent State University, Kent, Ohio, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited