OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1362–1367

Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface

Jan Renger, Stefan Grafström, Lukas M. Eng, and Volker Deckert  »View Author Affiliations


JOSA A, Vol. 21, Issue 7, pp. 1362-1367 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001362


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the numerical analysis of the local electric field enhancement of nanosized silver ellipsoids placed in the evanescent field near a glass surface. Across the visible spectrum the enhancement factor for silver particles varies by more than one order of magnitude because of surface-plasmon resonance. Because of the spatially inhomogeneous excitation, higher-order modes additionally contribute and modify the spectral dependence of the electric field compared with plane-wave excitation. Moving the metal particle toward the glass surface increases the field enhancement and shifts the plasmon resonance, which in addition splits between both ends of the particle. Besides the near-field properties of such a probe we also discuss to what extent these local properties can be measured in the far field.

© 2004 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(260.6970) Physical optics : Total internal reflection
(290.5850) Scattering : Scattering, particles
(300.6450) Spectroscopy : Spectroscopy, Raman

History
Original Manuscript: August 19, 2003
Revised Manuscript: February 6, 2004
Manuscript Accepted: February 6, 2004
Published: July 1, 2004

Citation
Jan Renger, Volker Deckert, Stefan Grafström, and Lukas M. Eng, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A 21, 1362-1367 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-7-1362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). [CrossRef]
  2. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994). [CrossRef] [PubMed]
  3. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994). [CrossRef]
  4. M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992). [CrossRef] [PubMed]
  5. T. Kalkbrenner, “Charakterisierung und Manipulation der Plasmon-Resonanz eines einzelnen Gold-Nanopartikels,” Ph.D. thesis (Universität Konstanz, Konstanz, Germany, 2002).
  6. B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998). [CrossRef]
  7. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–1541 (1985). [CrossRef]
  8. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000). [CrossRef]
  9. M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000). [CrossRef]
  10. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000). [CrossRef]
  11. A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003). [CrossRef] [PubMed]
  12. A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992). [CrossRef]
  13. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  14. A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003). [CrossRef]
  15. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000). [CrossRef]
  16. O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002). [CrossRef]
  17. Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001). [CrossRef]
  18. J. Gersten, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surface,” J. Chem. Phys. 73, 3023–3037 (1980). [CrossRef]
  19. P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983). [CrossRef]
  20. A. Wokaun, “Surface enhancement of optical fields—mechanism and application,” Mol. Phys. 56, 1–33 (1985). [CrossRef]
  21. L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  22. A. Zayats, “Electromagnetic field enhancement in the context of apertureless near-field microscopy,” Opt. Commun. 161, 156–162 (1999). [CrossRef]
  23. R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000). [CrossRef]
  24. N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002). [CrossRef]
  25. J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002). [CrossRef]
  26. J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003). [CrossRef]
  27. H. Chew, D. Wang, M. Kerker, “Elastic scattering of evanescent electromagnetic waves,” Appl. Opt. 18, 2679–2687 (1979). [CrossRef] [PubMed]
  28. C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995). [CrossRef]
  29. C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998). [CrossRef]
  30. R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999). [CrossRef]
  31. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  32. C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).
  33. C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).
  34. D. Lynch, W. Hunter, “Introduction to the Data for Several Metals,” in E. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1985), p. 350.
  35. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  36. A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000). [CrossRef] [PubMed]
  37. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  38. L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995). [CrossRef]
  39. B. Hecht, “Forbidden light scanning near-field optical microscopy,” Ph.D. thesis (Universität Basel, Basel, Switzerland, 1996).
  40. B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited