OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 8 — Aug. 30, 2004
  • pp: 1393–1401

Deconvolution of adaptive optics retinal images

Julian C. Christou, Austin Roorda, and David R. Williams  »View Author Affiliations


JOSA A, Vol. 21, Issue 8, pp. 1393-1401 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001393


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We quantitatively demonstrate the improvement to adaptively corrected retinal images by using deconvolution to remove the residual wave-front aberrations. Qualitatively, deconvolution improves the contrast of the adaptive optics images. In this work we demonstrate that quantitative information is also increased by investigation of the improvement to cone classification due to the reduction in confusion of adjacent cones because of the extended wings of the point-spread function. The results show that the error in classification between the L and M cones is reduced by a factor of 2, thereby reducing the number of images required by a factor of 4.

© 2004 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2980) Image processing : Image enhancement
(100.3190) Image processing : Inverse problems
(170.4470) Medical optics and biotechnology : Ophthalmology

History
Original Manuscript: December 5, 2003
Revised Manuscript: March 15, 2004
Manuscript Accepted: March 15, 2004
Published: August 1, 2004

Citation
Julian C. Christou, Austin Roorda, and David R. Williams, "Deconvolution of adaptive optics retinal images," J. Opt. Soc. Am. A 21, 1393-1401 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-8-1393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  2. I. Iglesias, P. Artal, “High-resolution images obtained by deconvolution from wavefront sensing,” Opt. Lett. 25, 1804–1806 (2000). [CrossRef]
  3. D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002). [CrossRef]
  4. J. Arines, S. Bara, “Hybrid technique for high resolution imaging of the eye fundus,” ACI Mater. J.11, 761–766 (2003); www.opticsexpress.org .
  5. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  6. A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001). [CrossRef] [PubMed]
  7. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” ACI Mater. J.8, 631–643 (2001); www.opticsexpress.org .
  8. T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).
  9. F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).
  10. W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964). [CrossRef] [PubMed]
  11. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  12. G. Wyszecki, W. S. Stiles, “Theories and models of color vision,” in Color Science: Concepts and Methods, Quantitative Data and Formulae2nd ed. (Wiley, New York, 1982).
  13. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  14. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  15. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993). [CrossRef]
  16. J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).
  17. R. J. Hanisch, R. L. White, ed., The Restoration of HST Images & Spectra II NASA/Goddard Space Telescope Science Institute (NASA/Space Telescope Science Institute, Baltimore, Md., 1994).
  18. D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000). [CrossRef]
  19. J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).
  20. A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003). [CrossRef]
  21. L. Mugnier, C. Robert, J.-M. Conan, V. Michau, S. Salem, “Myopic deconvolution from wave-front sensing,” J. Opt. Soc. Am. A 18, 862–872 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited