OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 8 — Aug. 30, 2004
  • pp: 1465–1471

Application of evolution strategies for the solution of an inverse problem in near-field optics

Demetrio Macı́as, Alexandre Vial, and Dominique Barchiesi  »View Author Affiliations

JOSA A, Vol. 21, Issue 8, pp. 1465-1471 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an inversion procedure for the characterization of a nanostructure from near-field intensity data. The method proposed is based on heuristic arguments and makes use of evolution strategies for the solution of the inverse problem as a nonlinear constrained-optimization problem. By means of some examples we illustrate the performance of our inversion method. We also discuss its possibilities and potential applications.

© 2004 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(180.5810) Microscopy : Scanning microscopy

Original Manuscript: February 5, 2004
Revised Manuscript: March 12, 2004
Manuscript Accepted: March 12, 2004
Published: August 1, 2004

Demetrio Macı́as, Alexandre Vial, and Dominique Barchiesi, "Application of evolution strategies for the solution of an inverse problem in near-field optics," J. Opt. Soc. Am. A 21, 1465-1471 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997). [CrossRef]
  2. C. Girard, C. Joachim, S. Gauthier, “The physics of the near field,” Rep. Prog. Phys. 63, 893–938 (2000). [CrossRef]
  3. D. Courjon, C. Bainier, “Near-field microscopy and nearfield optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  4. A. Dereux, C. Girard, J.-C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000). [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  6. A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. 23, 623–630 (1975). [CrossRef]
  7. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).
  8. D. A. Christensen, “Analysis of near-field tip patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995). [CrossRef]
  9. H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996). [CrossRef]
  10. J. P. Kottman, O. J. F. Martin, “Accurate solution of the volume-integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000). [CrossRef]
  11. R. Fikri, Th. Grosges, D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe-vibration modeling,” Opt. Lett. 28, 2147–2149 (2003). [CrossRef] [PubMed]
  12. F. de Fornel, P. M. Adam, L. Salomon, J. P. Goudonnet, A. Sentenac, R. Carminati, J.-J. Greffet, “Analysis of image formation with a photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 35–45 (1996). [CrossRef]
  13. O. J. F. Martin, C. Girard, D. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996). [CrossRef]
  14. R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995). [CrossRef]
  15. J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995). [CrossRef]
  16. R. Carminati, J.-J. Greffet, “Reconstruction of the dielectric contrast profile from near-field data,” Ultramicroscopy 61, 11–16 (1995). [CrossRef]
  17. D. Macı́as, G. Olague, E. R. Méndez, “Surface profile reconstruction from scattered-intensity data using evolutionary strategies,” in Applications of Evolutionary Computing, S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G. R. Raidl, eds. (Springer-Verlag, Berlin, 2002), pp. 233–244.
  18. R. Wehrens, M. B. Lutgarde, “Classical and nonclassical optimization methods,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).
  19. J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, Mass., 1992).
  20. D. S. Weile, E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review,” IEEE Trans. Antennas Propag. 45, 343–353 (1997). [CrossRef]
  21. H. P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995).
  22. L. J. Fogel, “Autonomous automata,” Ind. Res. 4, 14–19 (1962).
  23. R. Salomon, “Evolutionary algorithms and gradient search: similarities and differences,” IEEE Trans. Evolutionary Comput. 2, 45–55 (1997). [CrossRef]
  24. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs (Springer-Verlag, Berlin, 1996).
  25. H. G. Beyer, The Theory of Evolution Strategies (Springer-Verlag, Berlin, 2001).
  26. Th. Bäck, U. Hammel, H.-P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evolutionary Computation. 1, 3–17 (1997). [CrossRef]
  27. D. Van Labeke, D. Barchiesi, “Scanning tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992). [CrossRef]
  28. J. Sjibers, P. Scheunders, N. Bonnet, D. Van Dyck, E. Raman, “Quantification and improvement of the signal-to-noise ratio in a magnetic resonance,” Magn. Reson. Imaging 14, 1157–1163 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited