OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 8 — Aug. 30, 2004
  • pp: 1503–1511

Bragg gratings written in Sn–Er–Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential

Suchandan Pal, Tong Sun, Kenneth T. V. Grattan, Scott A. Wade, Stephen F. Collins, Gregory W. Baxter, Bernard Dussardier, and Gérard Monnom  »View Author Affiliations


JOSA A, Vol. 21, Issue 8, pp. 1503-1511 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001503


View Full Text Article

Enhanced HTML    Acrobat PDF (1025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bragg gratings were fabricated in an Sn–Er–Ge-codoped silica fiber with a phase mask and ultraviolet radiation from a 248-nm KrF excimer laser. The photosensitivity of the fiber was examined by studying the initial growth rate of the gratings written into it. The thermal stability of the gratings was investigated and modeled in terms of both the refractive-index modulation and the effective refractive index of the fiber core. It was shown that the temperature-induced irreversible shift in the Bragg wavelength could not be predicted by the isothermal decay of the refractive-index modulation. Finally, the potential of the gratings written into the fiber is discussed in terms of their use in high-temperature-sensing applications.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature

History
Original Manuscript: February 4, 2004
Revised Manuscript: March 30, 2004
Manuscript Accepted: March 30, 2004
Published: August 1, 2004

Citation
Suchandan Pal, Tong Sun, Kenneth T. V. Grattan, Scott A. Wade, Stephen F. Collins, Gregory W. Baxter, Bernard Dussardier, and Gérard Monnom, "Bragg gratings written in Sn–Er–Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential," J. Opt. Soc. Am. A 21, 1503-1511 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-8-1503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).
  2. R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).
  3. K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Sensor Technology, Vol. 2 (Chapman and Hall, London, 1998).
  4. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993). [CrossRef]
  5. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993). [CrossRef]
  6. S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997). [CrossRef]
  7. L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron co-doped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997). [CrossRef]
  8. S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003). [CrossRef] [PubMed]
  9. I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibers,” Electron. Lett. 34, 1603–1604 (1998). [CrossRef]
  10. L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995). [CrossRef]
  11. G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000). [CrossRef]
  12. G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001). [CrossRef]
  13. G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002). [CrossRef]
  14. K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998). [CrossRef]
  15. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994). [CrossRef]
  16. S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997). [CrossRef]
  17. K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998). [CrossRef]
  18. Q. Wang, A. Hidayat, P. Niay, M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000). [CrossRef]
  19. T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.
  20. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003). [CrossRef]
  21. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).
  22. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995). [CrossRef]
  23. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000). [CrossRef]
  24. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632–2641 (2002). [CrossRef]
  25. Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997). [CrossRef]
  26. S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001). [CrossRef]
  27. J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000). [CrossRef]
  28. M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.
  29. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002). [CrossRef]
  30. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited