OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 8 — Aug. 30, 2004
  • pp: 1553–1558

Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes

Jörg Enderlein and Francesco Pampaloni  »View Author Affiliations


JOSA A, Vol. 21, Issue 8, pp. 1553-1558 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001553


View Full Text Article

Acrobat PDF (154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A unified operator approach is described for deriving Hermite–Gaussian and Laguerre–Gaussian laser beams by using as a starting point a plane-wave-spectrum representation of the electromagnetic field. We show that by using the plane-wave representation of the fundamental Gaussian mode as a seed function, all higher-order beam modes can be derived by acting with differential operators on this fundamental solution. The approach presented can be easily generalized to nonparaxial situations and to include vector effects of the electromagnetic field.

© 2004 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.2110) Physical optics : Electromagnetic optics

Citation
Jörg Enderlein and Francesco Pampaloni, "Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes," J. Opt. Soc. Am. A 21, 1553-1558 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-8-1553


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965).
  2. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
  3. A. E. Siegman, Lasers (University Science, Books, Mill Valley, Calif., 1986), pp. 642–652.
  4. R. Menzel, Photonics (Springer, New York, 2001), pp. 362–370.
  5. J. T. Verdeyen, Laser Electronics (Prentice Hall, Englewood Cliffs, N.J., 1981), pp. 53–69.
  6. A. Maitland and M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), pp. 153–175.
  7. O. Svelto, Principles of Lasers (Plenum, New York, 1998), pp. 148–159.
  8. K. J. Kuhn, Laser Engineering (Prentice Hall, Englewood Cliffs, N.J., 1998), pp. 84–88.
  9. K. Shimoda, Introduction to Laser Physics (Springer, New York, 1991).
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
  11. A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
  12. K. T. Gahagan and G. A. Schwartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
  13. A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
  14. M. Padgett and L. Allen, “Optical tweezers and spanners,” Phys. World 10, 35–38 (1997).
  15. M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quantum Electron. 31, 1–12 (1999).
  16. E. Zauderer, “Complex argument Hermite–Gaussian and Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 3, 465–469 (1986).
  17. A. E. Siegman, “Hermite–Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093–1094 (1973).
  18. A. Wünsche, “Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry,” J. Opt. Soc. Am. A 6, 1320–1329 (1989).
  19. D. R. Rhodes, “On the stored energy of planar apertures,” IEEE Trans. Antennas Propag. 14, 676–683 (1966).
  20. D. R. Rhodes, “On a fundamental principle in the theory of planar antennas,” Proc. IEEE 52, 1013–1021 (1964).
  21. W. H. Carter, “Electromagnetic beam fields,” J. Mod. Opt. 21, 871–92 (1974).
  22. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
  23. D. G. Hall, “Vector-beam solutions of Maxwells wave equation,” Opt. Lett. 21, 9–11 (1996).
  24. H. C. Kim and Y. H. Lee, “Hermite–Gaussian and Laguerre–Gaussian beams beyond the paraxial approximation,” Opt. Commun. 169, 9–16 (1999).
  25. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
  26. D. N. Pattanayak and G. P. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).
  27. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, “Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations,” J. Opt. Soc. Am. A 19, 404–412 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited