OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1593–1601

Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy

Chrysanthe Preza and José-Angel Conchello  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1593-1601 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001593


View Full Text Article

Enhanced HTML    Acrobat PDF (352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth.

© 2004 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

History
Original Manuscript: October 27, 2003
Revised Manuscript: April 20, 2004
Manuscript Accepted: April 20, 2004
Published: September 1, 2004

Citation
Chrysanthe Preza and José-Angel Conchello, "Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A 21, 1593-1601 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Preza, M. I. Miller, L. J. Thomas, J. G. McNally, “Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections,” J. Opt. Soc. Am. A 9, 219–228 (1992). [CrossRef] [PubMed]
  2. C. Preza, M. I. Miller, J.-A. Conchello, “Image reconstruction for 3-D light microscopy with a regularized linear method incorporating a smoothness prior,” in Biomedical Image Processing and Biomedical Visualization, R. S. Acharya, D. B. Goldgof, eds., Proc. SPIE1905, 129–139 (1993). [CrossRef]
  3. J.-A. Conchello, J. J. Kim, E. W. Hansen, “Enhanced three-dimensional reconstruction from confocal scanning microscope images. II. Depth discrimination versus signal-to-noise ratio in partially confocal images,” Appl. Opt. 33, 3740–3750 (1994). [CrossRef] [PubMed]
  4. J.-A. Conchello, “Super-resolution and point-spread function sensitivity analysis of the expectation-maximization algorithm for computational optical sectioning microscopy,” in Image Reconstruction and Restoration, T. J. Schulz, ed., Proc. SPIE2302, 369–378 (1994). [CrossRef]
  5. J.-A. Conchello, J. G. McNally, “Fast regularization technique for expectation maximization algorithm for computational optical sectioning microscopy,” in Proceedings of the IS&T/SPIE Symposium on Electronic Imaging, Science and Technology, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 199–208 (1996).
  6. J. Markham, J.-A. Conchello, “Tradeoffs in regularized maximum-likelihood image restoration,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 136–145 (1997). [CrossRef]
  7. J. Markham, J.-A. Conchello, “Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 18, 1062–1071 (2001). [CrossRef]
  8. D. A. Agard, “Optical sectioning microscopy,” Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984). [CrossRef]
  9. D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat, “Fluorescence microscopy in three dimensions,” Methods Cell Biol. 30, 353–377 (1989). [CrossRef] [PubMed]
  10. A. Erhardt, G. Zinser, D. Komitowski, J. Bille, “Reconstructing 3-D light-microscopic images by digital image processing,” Appl. Opt. 24, 194–200 (1985). [CrossRef] [PubMed]
  11. T. J. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  12. T. J. Holmes, “Expectation-maximization restoration of band-limited, truncated point-process intensities with application in microscopy,” J. Opt. Soc. Am. A 6, 1006–1014 (1989). [CrossRef]
  13. W. A. Carrington, K. E. Fogarty, F. S. Fay, “3D fluorescence imaging of single cells using image restoration,” in Noninvasive Techniques in Cell Biology, J. K. Fosket, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 53–72.
  14. W. A. Carrington, E. D. Lynch, W. Moore, G. Isenberg, K. E. Fogarty, F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268, 1483–1487 (1995). [CrossRef] [PubMed]
  15. S. Joshi, M. I. Miller, “Maximum a posteriori estimation with Good’s roughness for three-dimensional optical-sectioning microscopy,” J. Opt. Soc. Am. A 10, 1078–1085 (1993). [CrossRef] [PubMed]
  16. P. J. Verveer, T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14, 1696–1706 (1997). [CrossRef]
  17. P. J. Verveer, M. J. Gemkow, T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50–61 (1999). [CrossRef]
  18. S. S. Stefanou, E. W. Hansen, “Restoration of edges under Poisson noise using convex constraints with application to confocal microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 232–242 (1997). [CrossRef]
  19. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. USA 98, 3790–3795 (2001). [CrossRef] [PubMed]
  20. J. B. Pawley, “Limitations on optical sectioning in live-cell confocal microscopy,” Scanning 24, 241–246 (2002). [CrossRef] [PubMed]
  21. S. F. Gibson, F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 154–66 (1992). [CrossRef] [PubMed]
  22. L. R. Sherman, O. Albert, C. F. Schmidt, G. V. Vdovin, G. A. Mourou, T. B. Norris, “Adaptive compensation of aberrations in ultrafast 3D microscopy using a deformable mirror,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J.-A. Conchello, C. J. Cogswell, T. Wilson, eds., Proc. SPIE3919, 9–13 (2000). [CrossRef]
  23. L. Sherman, J. Y. Ye, O. Albert, T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002). [CrossRef] [PubMed]
  24. M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002). [CrossRef] [PubMed]
  25. P. N. Marsh, D. Burns, J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef] [PubMed]
  26. S. F. Gibson, F. Lanni, “Measured and analytical point spread functions of the optical microscope for use in 3-D optical serial sectioning microscopy,” in Optical Microscopy for Biology (Wiley-Liss, New York, 1990).
  27. H. Leung, “The importance of mounting medium’s refractive index and cover glass thickness for reducing optical aberrations on confocal laser scanning microscope (CLSM),” Microsc. Soc. Can. Bull. 21, 19–24 (1993).
  28. J. G. McNally, C. Preza, J.-A. Conchello, L. J. Thomas, “Artifacts in computational optical-sectioning microscopy,” J. Opt. Soc. Am. A 11, 1056–1067 (1994). [CrossRef]
  29. A. D. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B. Methodol. 39, 1–37 (1977).
  30. M. Faisal, A. D. Lanterman, D. L. Snyder, R. L. White, “Implementation of a modified Richardson–Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device camera,” J. Opt. Soc. Am. A 12, 2593–2603 (1995). [CrossRef]
  31. A. F. Boden, D. C. Redding, R. J. Hanisch, J. Mo, “Massively parallel spatially variant maximum-likelihood restoration of Hubble Space Telescope imagery,” J. Opt. Soc. Am. A 13, 1537–1545 (1996). [CrossRef]
  32. J. G. Nagy, D. P. O’Leary, “Restoring images degraded by spatially variant blur,” SIAM J. Sci. Comput. 19, 1063–1082 (1998). [CrossRef]
  33. H. J. Trussell, B. R. Hunt, “Image restoration of space-variant blurs by sectioned methods,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-26, 608–609 (1978). [CrossRef]
  34. J. G. Nagy, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, “Space-varying restoration of optical images,” J. Opt. Soc. Am. A 14, 3162–3174 (1997). [CrossRef]
  35. The XCOSM deconvolution package is available at http://www.omrfcosm.omrf.org and http://www.essrl.wustl.edu/∼preza/xcosm .
  36. C. Preza, J.-A. Conchello, “Image estimation accounting for point-spread function depth variation in three-dimensional fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, T. Wilson, eds., Proc. SPIE4964, 135–142 (2003). [CrossRef]
  37. D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1984).
  38. G. M. P. van Kempen, L. J. van Vliet, P. J. Verveer, H. T. M. van der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185, 354–365 (1994). [CrossRef]
  39. J.-A. Conchello, E. W. Hansen, “Enhanced 3-D reconstruction from confocal scanning microscope images. 1: Deterministic and maximum likelihood reconstructions,” Appl. Opt. 19, 3795–3804 (1990). [CrossRef]
  40. D. L. Snyder, M. I. Miller, Random Point Processes in Time and Space (Springer-Verlag, New York, 1991).
  41. D. L. Snyder, A. M. Hammoud, R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014–1023 (1993). [CrossRef] [PubMed]
  42. J.-A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15, 2609–2619 (1998). [CrossRef]
  43. I. Csiszár, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems,” Ann. Stat. 19, 2032–2066 (1991). [CrossRef]
  44. J. Markham, J.-A. Conchello, “Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur,” J. Opt. Soc. Am. A 16, 2377–2391 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited