OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1621–1634

Grating diffraction and Wood’s anomalies at two-dimensionally periodic impedance surfaces

Frank Falco, Theodor Tamir, and K. Ming Leung  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1621-1634 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001621


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of plane-wave scattering and Wood’s anomalies at two-dimensional (2-D) periodic surfaces by employing a simplified grating model given by a planar surface whose impedance varies sinusoidally along two orthogonal directions. We obtain a rigorous solution to the corresponding boundary-value problem in terms of an infinite set of coupled recurrence equations. When truncated for computational purposes, this solution is in the form of a banded matrix, which we solve by direct methods and also by a highly efficient iterated matrix procedure. Numerical results are presented for symmetric and nonsymmetric incidence cases, and we show that certain diffracted fields do not depolarize in the former case. The expected Wood’s anomalies of both Rayleigh and leaky-wave types are confirmed, and their location in wavelength space is numerically demonstrated for 2-D periodic configurations.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(290.5830) Scattering : Scattering, Brillouin

History
Original Manuscript: December 16, 2003
Revised Manuscript: March 30, 2004
Manuscript Accepted: March 30, 2004
Published: September 1, 2004

Citation
Frank Falco, Theodor Tamir, and K. Ming Leung, "Grating diffraction and Wood’s anomalies at two-dimensionally periodic impedance surfaces," J. Opt. Soc. Am. A 21, 1621-1634 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1621


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902). [CrossRef]
  2. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  3. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  4. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  5. E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic bandgap crystals: the face-centered-cubic case,” Phys. Rev. Lett. 67, 2295–2298 (1991). [CrossRef] [PubMed]
  6. D. Maystre, M. Nevière, “Sur une méthode d’étude quantitative des anomalies de Wood de réseaux de diffraction: application aux anomalies plasmon,” J. Opt. (Paris) 8, 165–174 (1977). [CrossRef]
  7. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, New York, 1982), pp. 661–724.
  8. L. F. DeSandre, J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A 8, 763–777 (1991). [CrossRef]
  9. M. Nevière, E. Popov, R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995). [CrossRef]
  10. T. Tamir, S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. Soc. Am. A 14, 1607–1616 (1997). [CrossRef]
  11. S. Peng, G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  12. A. Mizutani, H. Kikuta, K. Nakajima, K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A 18, 1261–1266 (2001). [CrossRef]
  13. A.-L. Fehrembach, D. Maystre, A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1144 (2002). [CrossRef]
  14. R. Bräuer, O. Bryngdahl, “Electromagnetic analysis of two-dimensional diffraction gratings,” Opt. Commun. 100, 1–5 (1993). [CrossRef]
  15. E. Noponen, J. Turunen, “Eigenmode method for electromagnetic three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994). [CrossRef]
  16. E. B. Grann, M. G. Moharam, D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994). [CrossRef]
  17. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997). [CrossRef]
  18. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  19. V. Bagnoud, S. Mainguy, “Diffraction of electromagnetic waves by dielectric cross gratings: a three-dimensional Rayleigh–Fourier solution,” J. Opt. Soc. Am. A 16, 1277–1285 (1999). [CrossRef]
  20. E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001). [CrossRef]
  21. C.-H. Lin, K. M. Leung, T. Tamir, “Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations,” J. Opt. Soc. Am. A 19, 2005–2017 (2002). [CrossRef]
  22. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A Pure Appl. Opt. 5, 345–355 (2003). [CrossRef]
  23. R. B. Hwang, “Scattering characteristics of two-dimensionally periodic impedance surface,” IEEE Trans. Antennas Propag. 48, 1521–1527 (2000). [CrossRef]
  24. T. Tamir, H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. A 61, 1397–1413 (1971). In particular, refer to Section II and Eq. (20) therein. [CrossRef]
  25. R. J. Ikola, “Effects of asymmetry in diffraction gratings,” Ph.D. dissertation (Polytechnic Institute of Brooklyn, New York, 1972).
  26. R. B. Hwang, S. T. Peng, “Guidance characteristics of two-dimensionally periodic impedance surface,” IEEE Trans. Microwave Theory Tech. 47, 2503–2511 (1999). [CrossRef]
  27. R. E. Collin, Field Theory of Guided Waves (IEEE Press, Piscataway, N.J., 1991), Chap. 11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited