OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1645–1658

Compensation of distant phase-distorting layers. I. Narrow-field-of-view adaptive receiver system

Miao Yu and Mikhail A. Vorontsov  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1645-1658 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001645


View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze various scenarios of adaptive wave-front phase-aberration correction in optical-receiver-type systems when inhomogeneties of the wave propagation medium are either distributed along the propagation path or localized in a few thin layers remotely located from the receiver telescope pupil. Phase-aberration compensation is performed with closed-loop control architectures based on decoupled stochastic parallel gradient descent, stochastic parallel gradient descent, and phase conjugation control algorithms. Both receiver system aperture diffraction effects and the effect of wave-front corrector position on phase-aberration compensation efficiency are analyzed.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.0110) Imaging systems : Imaging systems

History
Original Manuscript: October 24, 2003
Revised Manuscript: March 18, 2004
Manuscript Accepted: March 18, 2004
Published: September 1, 2004

Citation
Miao Yu and Mikhail A. Vorontsov, "Compensation of distant phase-distorting layers. I. Narrow-field-of-view adaptive receiver system," J. Opt. Soc. Am. A 21, 1645-1658 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).
  3. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, New York, 1999).
  4. M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1998).
  5. L. Sherman, J. Y. Ye, O. Albert, T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. (Oxford) 206, 65–71 (2002). [CrossRef]
  6. P. Artal, S. Marcos, R. Navarro, D. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  7. D. L. Fried, J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef] [PubMed]
  8. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  9. E. O. LeBigot, W. J. Wild, “Theory of branch-point detection and its implementation,” J. Opt. Soc. Am. A 16, 1724–1729 (1999). [CrossRef]
  10. M. C. Roggemann, A. C. Koivunen, “Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction,” J. Opt. Soc. Am. A 17, 53–62 (2000). [CrossRef]
  11. V. Aksenov, V. Banakh, O. Tikhomirova, “Potential and vortex features of optical speckle fields and visualization of wave-front singularities,” Appl. Opt. 37, 4536–4540 (1998). [CrossRef]
  12. M. C. Roggemann, D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998). [CrossRef]
  13. J. D. Barchers, “Evaluation of impact of finite-resolution effects on scintillation compensation using two deformable mirrors,” J. Opt. Soc. Am. A 18, 3098–3109 (2001). [CrossRef]
  14. M. A. Vorontsov, E. W. Justh, L. A. Beresnev, “Adaptive optics with advanced phase-contrast techniques. I. High-resolution wave-front sensing,” J. Opt. Soc. Am. A 18, 1289–1299 (2001). [CrossRef]
  15. E. W. Just, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, P. S. Krishnaprasad, “Adaptive optics with advanced phase-contrast techniques. II. High-resolution wave-front control,” J. Opt. Soc. Am. A 18, 1300–1311 (2001). [CrossRef]
  16. J. D. Barchers, “Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations,” J. Opt. Soc. Am. A 19, 926–945 (2002). [CrossRef]
  17. J. M. Beckers, “Detailed compensation of atmospheric seeing using multi-conjugate adaptive optics,” F. J. Roddier, ed., Proc. SPIE1114, 215–217 (1989). [CrossRef]
  18. N. Ageorges, C. Dainty, Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, Dordrecht, London, 2000).
  19. D. C. Johnston, B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994). [CrossRef]
  20. B. L. Ellerbroek, C. Van Loan, N. P. Pitsianis, R. J. Plemmons, “Optimizing closed-loop adaptive-optics performance with use of multiple control bandwidths,” J. Opt. Soc. Am. A 11, 2871–2886 (1994). [CrossRef]
  21. J. D. Barchers, B. L. Ellerbroek, “Improved compensation of turbulence-induced amplitude and phase distortions by means of multiple near-field phase adjustments,” J. Opt. Soc. Am. A 18, 399–411 (2001). [CrossRef]
  22. B. L. Ellerbroek, F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001). [CrossRef]
  23. C. Flicker, “Sequence of phase correction in multi-conjugate adaptive optics,” Opt. Lett. 26, 1743–1745 (2001). [CrossRef]
  24. A. Tokovinin, M. Le Louarn, M. Sarazin, “Isoplanatism in multi-conjugate adaptive optics systems,” J. Opt. Soc. Am. A 17, 1819–1827 (2000). [CrossRef]
  25. R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  26. R. A. Muller, A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974). [CrossRef]
  27. M. A. Vorontsov, V. I. Shmalhauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985).
  28. T. R. O’Meara, “The multi-dither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977). [CrossRef]
  29. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, D. G. Voelz, “Adaptive imaging system for phase-distorted extended source/multiple distance objects,” Appl. Opt. 36, 3319–3328 (1997). [CrossRef] [PubMed]
  30. M. A. Vorontsov, V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998). [CrossRef]
  31. M. A. Vorontsov, G. W. Garhart, M. Cohen, G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000). [CrossRef]
  32. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin, “Pulse compensation by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999). [CrossRef]
  33. L. Arnold, “Optimized axial support topologies for thin telescope mirrors,” Opt. Eng. 34, 567–574 (1995). [CrossRef]
  34. S. S. Chesnokov, I. V. Davletshina, “Simplex method in problems of light-beam phase control,” Appl. Opt. 34, 8375–8381 (1995). [CrossRef] [PubMed]
  35. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [CrossRef]
  36. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975). [CrossRef]
  37. P. Hariharan, Selected Papers on Interferometry (SPIE Optical Engineering Press, Bellingham, Wash., 1991).
  38. S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Principles of Statistical Radiophysics 4, Wave Propagation through Random Media (Springer-Verlag, Berlin, 1989).
  39. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wave-front distortion using scattered light from a laser guide-star,” Nature 353, 144–146 (1991). [CrossRef]
  40. L. C. Andrews, “An analytic model for the refractive index power spectrum and its application to optical scintillations in the atmosphere,” J. Mod. Opt. 39, 1849–1853 (1992). [CrossRef]
  41. D. L. Fried, “Statistics of a geometric representation of wave-front distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  42. A. T. Young, “Aperture filtering and saturation of scintillation,” J. Opt. Soc. Am. 60, 248–250 (1970). [CrossRef]
  43. J. D. Barchers, D. L. Fried, “Optimal control of laser beams for propagation through a turbulent medium,” J. Opt. Soc. Am. A 19, 1779–1793 (2002). [CrossRef]
  44. V. P. Sivokon, M. A. Vorontsov, “High-resolution adaptive phase distortion suppression based solely on intensity information,” J. Opt. Soc. Am. A 16, 2567–2573 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited