OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1659–1668

Compensation of distant phase-distorting layers. II. Extended-field-of-view adaptive receiver system

Mikhail A. Vorontsov and Miao Yu  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1659-1668 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001659


View Full Text Article

Acrobat PDF (545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the anisoplanatic adaptive receiver system field of view (FOV) and the possibility of controlling the system FOV by using an adaptive optics system with multiple wave-front sensors that sense wave-front phase aberrations of reference waves with different arrival angles. The conventional decoupled stochastic parallel gradient descent (D-SPGD) technique is generalized to include output signals from multiple wave-front sensors. The multiple-reference D-SPGD control algorithm introduced here is applied to obtain an anisotropic FOV in adaptive receiver systems by using two and three reference waves.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.0110) Imaging systems : Imaging systems

Citation
Mikhail A. Vorontsov and Miao Yu, "Compensation of distant phase-distorting layers. II. Extended-field-of-view adaptive receiver system," J. Opt. Soc. Am. A 21, 1659-1668 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1659


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Yu and M. A. Vorontsov, “Compensation of distant phase-distorting layers. I. Narrow-field-of-view adaptive receiver,” J. Opt. Soc. Am. A 21, 1645–1658 (2004).
  2. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998).
  3. M. A. Vorontsov, G. W. Garhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000).
  4. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002).
  5. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).
  6. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–56 (1982).
  7. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, New York, 1999).
  8. T. Fusco, J. M. Conan, L. M. Mugnier, V. Michau, and G. Rousset, “Characterization of adaptive optics point spread function for anisoplanatic imaging: application to stellar field deconvolution,” Astron. Astrophys. 142, 149–156 (2000).
  9. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
  10. B. L. Ellerbroek and F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001).
  11. D. C. Johnson and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
  12. V. V. Voitsekhovich and S. Bara, “Effect of anisotropic imaging in off-axis adaptive astronomical systems,” Astron. Astrophys., Suppl. Ser. 137, 385–389 (1999).
  13. N. Ageorges and C. Dainty, Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  14. J. L. Beuzit, N. Hubin, E. Gendron, L. Demailly, P. Gigan, F. Lacombe, F. Chazallet, D. Rabaud, and G. Rousset, “Adonis: a user-friendly adaptive optics system for the ESO 3.6 meter telescope,” in Adaptive Optics in Astronomy, F. Merkle, ed., Proc. SPIE 2201, 955–960 (1994).
  15. E. Kibblewhite, “Laser beacons for astronomy,” in Laser Guide Star Adaptive Optics, R. Q. Fugate, ed. (Philips Laboratory, Kirtland Air Force Base, N.M., 1992), pp. 24–36.
  16. M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  17. B. M. Welsh and C. S. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991).
  18. M. Le Louarn, “Multi-conjugated adaptive optics with laser guide stars: performance in the infrared and visible,” Mon. Not. R. Astron. Soc. 334, 865–874 (2002).
  19. M. Le Louarn and M. Tallon, “Analysis of modes and behavior of a multiconjugate adaptive optics system,” J. Opt. Soc. Am. A 19, 912–925 (2002).
  20. T. R. O’Meara, “The multi-dither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977).
  21. J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, New York, 2003).
  22. A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing (Wiley, New York, 1993).
  23. C. Flicker, “Sequence of phase correction in multiconjugate adaptive optics,” Opt. Lett. 26, 1743–1745 (2001).
  24. A. Tokovinin, M. Le Louarn, and M. Sarazin, “Isoplanatism in multi-conjugate adaptive optics systems,” J. Opt. Soc. Am. A 17, 1819–1827 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited