OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1703–1713

Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography

Raymond C. Rumpf and Eric G. Johnson  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1703-1713 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001703


View Full Text Article

Acrobat PDF (996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive and fully three-dimensional model of holographic lithography is used to predict more rigorously the geometry and transmission spectra of photonic crystals formed in Epon® SU-8 photoresist. It is the first effort known to the authors to incorporate physics of exposure, postexposure baking, and developing into three-dimensional models of photonic crystals. Optical absorption, reflections, standing waves, refraction, beam coherence, acid diffusion, resist shrinkage, and developing effects combine to distort lattices from their ideal geometry. These are completely neglected by intensity-threshold methods used throughout the literature to predict lattices. Numerical simulations compare remarkably well with experimental results for a face-centered-cube (FCC) photonic crystal. Absorption is shown to produce chirped lattices with broadened bandgaps. Reflections are shown to significantly alter lattice geometry and reduce image contrast. Through simulation, a diamond lattice is formed by multiple exposures, and a hybrid trigonal–FCC lattice is formed that exhibits properties of both component lattices.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography

Citation
Raymond C. Rumpf and Eric G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1703

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited