OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1740–1749

Calculation of radiation modes by the Lanczos–Fourier expansion

Nikolaos F. Dasyras, Ioannis G. Tigelis, Andreas D. Tsigopoulos, and Alexander B. Manenkov  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1740-1749 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001740


View Full Text Article

Acrobat PDF (386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For construction of the TE radiation modes of planar waveguides several methods are employed that are based on collocation techniques. The field representation in the core is based on the Lanczos–Fourier sinusoidal series. The numerical codes are very simple and give accurate results. The validity of these methods is checked for constant refractive-index profiles, while numerical results are also given for parabolic profiles. Furthermore, the validity of the orthogonality condition between the guided and the radiation modes is checked. These methods are demonstrated to be effective and can also be employed to study the TM case and waveguides of lossy media, as well as anisotropic and chiral structures.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

Citation
Nikolaos F. Dasyras, Ioannis G. Tigelis, Andreas D. Tsigopoulos, and Alexander B. Manenkov, "Calculation of radiation modes by the Lanczos–Fourier expansion," J. Opt. Soc. Am. A 21, 1740-1749 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1740


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49, 273–290 (1970).
  2. R. M. Knox and P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of the MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic, Brooklyn, N.Y., 1970), pp. 497–516.
  3. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J. Optoelectron. 139, 101–104 (1992).
  4. T. E. Rozzi, “Rigorous analysis of the step discontinuity in a planar dielectric waveguide,” IEEE Trans. Microwave Theory Tech. MTT-26, 738–746 (1978).
  5. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
  6. M. Munowitz and D. J. Vezzetti, “Numerical modeling of coherent coupling and radiation fields in planar Y-branch interferometers,” J. Lightwave Technol. LT-10, 1570–1573 (1992).
  7. R. Baets and P. E. Lagasse, “Calculation of radiation loss in integrated-optic tapers and Y-junctions,” Appl. Opt. 21, 1972–1978 (1982).
  8. M. S. Stern, “Semi-vectorial polarized H field solutions for dielectric waveguides with arbitrary index profiles,” IEE Proc. J. Optoelectron. 135, 333–338 (1988).
  9. S. V. Burke, “Spectral index method applied to coupled rib waveguides,” Electron. Lett. 25, 605–606 (1989).
  10. W. P. Huang, C. L. Xu, and S. K. Chaundhuri, “A finite difference vector beam propagation method for three dimensional waveguide structures,” IEEE Photonics Technol. Lett. 4, 148–151 (1992).
  11. C. J. Smartt, T. M. Benson, and P. C. Kendall, “Free-space radiation mode method for the analysis of propagation in optical waveguide devices,” IEE Proc. J. Optoelectron. 140, 56–61 (1993).
  12. F. Fernandez and Y. Lu, Microwave and Optical Waveguide Analysis by the Finite Element Method (Research Studies Press, Hertfordshire, UK, 1996).
  13. A. Vukovic, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel half space radiation mode method for buried waveguide analysis,” Opt. Quantum Electron. 31, 41–51 (1999).
  14. D. N. Chien, M. Tanaka, and K. Tanaka, “Numerical simulation of an arbitrarily ended asymmetrical slab waveguide by guided-mode extracted integral equations,” J. Opt. Soc. Am. A 19, 1649–1657 (2002).
  15. A. B. Manenkov, “Reflection of the surface mode from an abrupt ended dielectric tube waveguide,” IEE Proc.-J: Optoelectron. 139, 194–200 (1992).
  16. A. V. Brovko, A. B. Manenkov, and A. G. Rozhnev, “FDTD-analysis of the wave diffraction from dielectric waveguide discontinuities,” Opt. Quantum Electron. 35, 395–406 (2003).
  17. I. G. Tigelis and A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999).
  18. I. G. Tigelis and A. B. Manenkov, “Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique,” J. Opt. Soc. Am. A 17, 2249–2259 (2000).
  19. A. W. Snyder, “Continuous mode spectrum of a circular dielectric rod,” IEEE Trans. Microwave Theory Tech. MTT-19, 720–727 (1971).
  20. V. V. Shevchenko, “On the completeness of spectral expansion of the electromagnetic field in the set of dielectric circular rod waveguide eigenwaves,” Radio Sci. 17, 229–231 (1982).
  21. I. G. Tigelis, C. N. Capsalis, and N. K. Uzunoglu, “Computation of the dielectric rod waveguide radiation modes,” Int. J. Infrared Millim. Waves 8, 1053–1068 (1987).
  22. N. Morita, “Radiation modes of a circular dielectric waveguide,” J. Electromagn. Waves Appl. 2, 445–457 (1988).
  23. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), pp. 19–30.
  24. J. J. Burke, “Simple formulation of radiation modes in planar multilayer waveguides,” J. Opt. Soc. Am. A 11, 2481–2484 (1994).
  25. T. G. Theodoropoulos and I. G. Tigelis, “Radiation modes of a five-layer symmetric slab waveguide,” Int. J. Infrared Millim. Waves 16, 1810–1824 (1995).
  26. A. B. Manenkov, “Excitation of open homogeneous waveguides,” Radiophys. Quantum Electron. 13, 578–586 (1970).
  27. A. B. Manenkov, “Orthogonality relation for the eigenmodes of lossy anisotropic waveguides (fibres),” IEE Proc. J. Optoelectron. 140, 206–212 (1993).
  28. D. P. Nyquist, D. R. Johnson, and S. V. Hsu, “Orthogonality and amplitude spectrum of radiation modes along open-boundary waveguides,” J. Opt. Soc. Am. 71, 49–54 (1981).
  29. R. A. Sammut, “Orthogonality and normalization of radiation modes in dielectric waveguides,” J. Opt. Soc. Am. 72, 1335–1337 (1982).
  30. C. Vassallo, “Orthogonality and normalization of radiation modes in dielectric waveguides: an alternate approach,” J. Opt. Soc. Am. 73, 680–683 (1983).
  31. C. Lanczos, Applied Analysis (Prentice Hall, Englewood Cliffs, N. J., 1956).
  32. P. A. Koukoutsaki, I. G. Tigelis, and A. B. Manenkov, “Guided-mode analysis by the Lanczos-Fourier expansion,” J. Opt. Soc. Am. A 19, 2293–2300 (2002).
  33. A. B. Manenkov, “Eigenmodes expansion in lossy open waveguides,” Opt. Quantum Electron. 23, 621–632 (1991).
  34. G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial Differential Equations (Wiley, New York, 1960).
  35. J. L. Altman, Microwave Circuits (Nostrand, Princeton, N.J., 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited