OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1750–1760

Layer-by-layer design method for multilayers with barrier layers: application to Si/Mo multilayers for extreme-ultraviolet lithography

Juan I. Larruquert  »View Author Affiliations

JOSA A, Vol. 21, Issue 9, pp. 1750-1760 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A previous layer-by-layer multilayer design method [J. Opt. Soc. Am. A 19, 385 (2002)] is completed by adding the possibility of alternating layers with fixed thicknesses along with layers whose thicknesses are optimized for the largest possible reflectance at a desired wavelength. The previous algorithm did not allow for layers with fixed thicknesses. The current formalism is particularly suited for a multilayer design in which barrier layers of given thicknesses are used to prevent diffusion and/or reaction between the multilayer constituents. The design method is also useful both when intermixing zones develop at multilayer interfaces and when capping layers are used. The algorithm allows the design of multilayers with complex barrier layers with any number of layers of any optical constants. The optimization can be performed either for normal incidence or for nonnormal incidence with either s- or p-polarized radiation. The completed method provides a fast and accurate procedure for multilayer optimization regardless of the number of different materials used in the multilayer. The optimum layer thickness is determined by means of functions suitable for implementation in a computer code. The performance of the current algorithm is exemplified through the design of Si/Mo multilayers with intermixing layers or with barrier layers that are optimized for the largest reflectance at 13.4 nm. The use of specific barrier layers on each multilayer interface is also discussed.

© 2004 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(220.3740) Optical design and fabrication : Lithography
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(260.7210) Physical optics : Ultraviolet, vacuum
(340.7470) X-ray optics : X-ray mirrors
(350.6090) Other areas of optics : Space optics

Original Manuscript: January 23, 2004
Revised Manuscript: April 6, 2004
Manuscript Accepted: April 6, 2004
Published: September 1, 2004

Juan I. Larruquert, "Layer-by-layer design method for multilayers with barrier layers: application to Si/Mo multilayers for extreme-ultraviolet lithography," J. Opt. Soc. Am. A 21, 1750-1760 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Spiller, ed., Soft X-Ray Optics (SPIE Press, Bellingham, Wash., 1994), p. 143.
  2. J. I. Larruquert, “New layer-by-layer multilayer design method,” J. Opt. Soc. Am. A 19, 385–390 (2002). [CrossRef]
  3. M. Yamamoto, T. Namioka, “Layer-by-layer design method for soft-x-ray multilayers,” Appl. Opt. 31, 1622–1630 (1992). [CrossRef] [PubMed]
  4. J.-P. Delaboudinière, -G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez, F. Miller, X. Y. Song, B. Au, K. P. Dere, R. A. Howard, R. Kreplin, D. J. Michels, J. D. Moses, J. M. Defise, C. Jamar, P. Rochus, J. P. Chauvineau, J. P. Marioge, R. C. Catura, J. R. Lemen, L. Shing, R. A. Stern, J. B. Gurman, W. M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E. L. Van Dessel, “EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission,” Sol. Phys. 162, 291–312 (1995). [CrossRef]
  5. T. Yamazaki, Y. Takizawa, H. Kunieda, K. Yamashita, K. Ikeda, K. Misaki, M. Nakamura, L. Yoshikawa, A. Yamaguchi, “Normal incidence multilayer telescope for galactic EUV observation,” J. Electron Spectrosc. Relat. Phenom. 80, 299–302 (1996). [CrossRef]
  6. See, for instance, W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986).
  7. D. G. Stearns, M. B. Stearns, Y. Cheng, J. H. Stith, N. M. Ceglio, “Thermally induced structural modification of Mo-Si multilayers,” J. Appl. Phys. 67, 2415–2427 (1990), and references therein. [CrossRef]
  8. S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys., Part 1 41, 4074–4081 (2002). [CrossRef]
  9. D. G. Stearns, R. S. Rosen, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 2–13 (1991). [CrossRef]
  10. http://www-cxro.lbl.gov/optical_constants .
  11. J. I. Larruquert, “Sub-quarterwave multilayers with enhanced reflectance at 13.4 and 11.3 nm,” Opt. Commun. 206, 259–273 (2002). [CrossRef]
  12. H. Takenaka, H. Ito, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998). [CrossRef]
  13. T. Feigl, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001). [CrossRef]
  14. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002). [CrossRef]
  15. M. Singh, J. J. M. Braat, “Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity,” Appl. Opt. 39, 2189–2197 (2000). [CrossRef]
  16. J. I. Larruquert, “Reflectance enhancement in the extreme ultraviolet and soft x-rays by means of multilayers with more than two materials,” J. Opt. Soc. Am. A 19, 391–397 (2002). [CrossRef]
  17. T. L. Lee, L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer thin films,” J. Appl. Phys. 75, 2007–2014 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited