OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1761–1768

Analyzing the scattering properties of coupled metallic nanoparticles

Carsten Rockstuhl, Martin Guy Salt, and Hans Peter Herzig  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1761-1768 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001761


View Full Text Article

Acrobat PDF (936 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the boundary element method to the analysis of the plasmon response of systems that consist of coupled metallic nanoscatterers. For systems made of two or more objects, the response depends strongly on the individual particle behavior as well as on the separation distance and on the configuration of the particles relative to the illumination direction. By analyzing the behavior of these systems, we determine the smallest interaction distance at which the particles can be considered decoupled. We discriminate the two cases of particle systems consisting of scatterers with the same and different resonance wavelengths.

© 2004 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(240.6680) Optics at surfaces : Surface plasmons

Citation
Carsten Rockstuhl, Martin Guy Salt, and Hans Peter Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A 21, 1761-1768 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1761


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
  2. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
  3. G. Padeletti and P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
  4. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  5. J. P. Kottmann and O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
  6. W. H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
  7. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
  8. E. Moreno, D. E. Erni, C. Hafner, and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002).
  9. C. Rockstuhl, M. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).
  10. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral method applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
  11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–825 (1985).
  12. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
  13. J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, and C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
  15. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
  16. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
  18. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
  19. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
  20. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
  21. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited