OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1776–1784

Complex unitary vectors for the direction of propagation and for the polarization of electromagnetic waves in absorbing isotropic media

S. Alfonso, C. Alberdi, J. M. Diñeiro, M. Berrogui, B. Hernández, and C. Sáenz  »View Author Affiliations


JOSA A, Vol. 21, Issue 9, pp. 1776-1784 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001776


View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a formalism based on complex unitary vectors for the direction of propagation and for the polarization in order to describe in detail the propagation of inhomogeneous plane waves in absorbing isotropic media. We obtain analytic expressions for the displacement vector, the electric field, the magnetic field, and the Poynting vector, and we study their geometry in terms of the geometrical interpretation of the complex directions of propagation inside the material. We introduce a complex coordinate system based on complex unitary vectors, where the description of the polarization states of the field vectors and the Poynting vector becomes simpler. The physical meaning and the interpretation of the mathematical operations involving these complex unitary vectors is provided.

© 2004 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

History
Original Manuscript: October 6, 2003
Revised Manuscript: January 9, 2004
Manuscript Accepted: January 9, 2004
Published: September 1, 2004

Citation
S. Alfonso, C. Alberdi, J. M. Diñeiro, M. Berrogui, B. Hernández, and C. Sáenz, "Complex unitary vectors for the direction of propagation and for the polarization of electromagnetic waves in absorbing isotropic media," J. Opt. Soc. Am. A 21, 1776-1784 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-9-1776


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  2. M. Berek, “Optische Messmethoden im polarisierten Auflicht in sonderheit zur Bestimmung der erzmineralien, mit einer theorie der Optick absorbierender Kristalle,” Fortschr. Mineral. 22, 1–104 (1937).
  3. B. D. Cervelle, R. Caye, J. Billard, “Determination de l’ellipsoïde complexe des indices de cristaux uniaxes fortement absorbants. Application à la pyrrhotite hexagonale,” Bull. Soc. Fr. Mineral. Cristallogr. 93, 72–82 (1970).
  4. G. N. Borzdov, “Waves with quadratic amplitude dependence on coordinates in uniaxial crystals,” J. Mod. Opt. 37, 281–284 (1990). [CrossRef]
  5. C. Alberdi, S. Alfonso, M. Berrogui, J. M. Diñeiro, C. Sáenz, B. Hernandez, “Field and Poynting vectors of homogeneous waves in uniaxial and absorbing dielectric media,” J. Mod. Opt. 49, 1553–1566 (2002). [CrossRef]
  6. J. M. Cabrera, F. Agulló, F. J. López, Optica Electromagnética. Vol. I: Materials y Aplicaciones, 1st ed. (Addison-Wesley Iberoamericana Española, Madrid, 1998).
  7. R. M. A. Azzam, E. Ericsson, “Angular range for reflection of p-polarized light at the surface of an absorbing medium with reflectance below that at normal incidence,” J. Opt. Soc. Am. A 19, 112–115 (2002). [CrossRef]
  8. R. Echarri, M. T. Garea, “Behavior of the Poynting vector in uniaxial absorbant media,” Pure Appl. Opt. 3, 931–941 (1994). [CrossRef]
  9. M. V. Berry, M. R. Dennis, “The optical singularities of birefringent dichroic chiral crystals,” Proc. R. Soc. London Ser. A 459, 1261–1292 (2003). [CrossRef]
  10. T. Setälä, A. Shevchenko, M. Kaivola, A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  11. T. Saastamoinen, J. Tervo, “Geometrical interpretation of the degree of polarization for arbitrary electromagnetic fields,” presented at the ICO Topical Meeting on Polarization Optics, Polvijärvi, Finland, June 30–July 3, 2003.
  12. Y. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, Vol. XXXIX, E. Wolf, ed. (Elsevier, Amsterdam, 1999), pp. 1–62.
  13. R. A. Egorchenkov, Y. A. Kravtsov, “Complex ray-tracingalgorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650–656 (2001). [CrossRef]
  14. M. Bornatici, R. A. Egorchenkov, Y. A. Kravtsov, O. Maj, E. Poli, “Exact, beam tracing and complex geometrical optics solutions for the propagation of Gaussian electromagnetic beams,” in 28th EPS Conference on Controlled Fusion and Plasma Physics, ECA Vol. 25A (ECA, Arlington, Va., 2001), pp. 293–300.
  15. P. Halevi, A. Mendoza, “Temporal and spatial behavior of the Poynting vector in dissipative media: refraction from vacuum into a medium,” J. Opt. Soc. Am. A 71, 1238–1242 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited