OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 126–141

Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

Mikhail A. Vorontsov and Valeriy Kolosov  »View Author Affiliations

JOSA A, Vol. 22, Issue 1, pp. 126-141 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack–Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.0110) Imaging systems : Imaging systems

Original Manuscript: April 2, 2004
Revised Manuscript: July 13, 2004
Published: January 1, 2005

Mikhail A. Vorontsov and Valeriy Kolosov, "Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing," J. Opt. Soc. Am. A 22, 126-141 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yu. A. Kravtsov, A. I. Saichev, “Effect of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp., 494–508 (1982). [CrossRef]
  2. P. E. Wolf, G. Maret, “Weak localization and coherence backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985). [CrossRef] [PubMed]
  3. Y. Kuga, A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 1, 831 (1984). [CrossRef]
  4. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Dedham, Mass., 1987).
  5. Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, A. I. Saichev, “Enhanced backscattering in optics,” in Progress in Optics, Vol. XXIX, E. Wolf, ed. (Elsevier, Amsterdam, 1991), pp. 65–197.
  6. J. F. Holms, “Enhancement of backscattered intensity for a bistatic lidar operating in atmospheric turbulence,” Appl. Opt. 30, 2643–2646 (1991). [CrossRef]
  7. Yu. A. Kravtsov, “New effects in wave propagation and scattering in random media (a mini review),” Appl. Opt. 32, 2681–2691 (1993). [CrossRef] [PubMed]
  8. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978). [CrossRef]
  9. M. A. Vorontsov, V. I. Shmalhauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985).
  10. J. W. Strohbehn, ed., Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1979).
  11. T. R. O’Meara, “The multi-dither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977). [CrossRef]
  12. S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Principles of Statistical Radiophysics 4, Wave Propagation through Random Media (Springer-Verlag, Berlin, 1989).
  13. F. G. Bass, I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1980).
  14. V. V. Tamoikin, A. A. Fraiman, “Statistical properties of field scattered by rough surface,” Radiophys. Quantum Electron. 11, 56–74 (1966).
  15. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  16. A. V. Shchegrov, A. A. Maradudin, E. R. Méndez, “Multiple scattering of light from randomly rough surfaces,” in Progress in Optics, Vol. XLVI (2000), pp. 117–241.
  17. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).
  18. N. C. Mehta, C. W. Allen, “Dynamic compensation of atmospheric turbulence with far-field optimization,” J. Opt. Soc. Am. A 11, 434–443 (1994). [CrossRef]
  19. M. A. Vorontsov, G. W. Carhart, M. Cohen, G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000). [CrossRef]
  20. M. A. Vorontsov, V. N. Karnaukhov, A. L. Kuz’minskii, V. I. Shmalhauzen, “Speckle-effects in adaptive optical systems,” Sov. J. Quantum Electron. 14, 761–766 (1984). [CrossRef]
  21. S. A. Kokorowski, M. E. Pedinoff, J. E. Pearson, “Analytical, experimental, and computer simulation results on the interactive effects of speckle with multi-dither adaptive optics systems,” J. Opt. Soc. Am. 67, 333–345 (1977). [CrossRef]
  22. G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge U. Press, New York, 1999), pp. 91–130.
  23. F. Rigaut, B. Ellerbroeck, M. Northcott, “Compensation of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope,” Appl. Opt. 36, 2856–2868 (1997). [CrossRef] [PubMed]
  24. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).
  25. M. A. Vorontsov, A. V. Koriabin, V. I. Shmalhauzen, Controllable Optical Systems (Nauka, Moscow, 1988).
  26. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  27. V. V. Vorob’ev, “Thermal blooming of laser beams in atmosphere,” Prog. Quantum Electron 15(1–2), 1–152 (1991). [CrossRef]
  28. A. C. Schell, The Multiple Plate Antenna (Ph.D dissertation, Massachusetts Institute of Technology, Cambridge, Mass., 1961).
  29. J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  30. V. V. Vorob’ev, “Narrowing of light beam in nonlinear medium with random inhomogeneities of the refraction index,” Radiophys. Quantum Electron. 13, 1053–1060 (1970).
  31. V. V. Kolosov, A. V. Kuzikovskii, “On phase compensation for refractive distortions of partially coherent beams,” Sov. J. Quantum Electron. 8, 490–494 (1981).
  32. V. V. Kolosov, R. P. Ratowsky, A. A. Zemlyanov, R. A. London, “X-ray laser coherence in the presence of density fluctuations,” in Hard X-Ray/Gamma-Ray and Neutron Optics, Sensors, and Applications, R. B. Hoover, F. P. Doty, eds., Proc. SPIE2859, 269–280 (1996). [CrossRef]
  33. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1984).
  34. A. Wheelon, Electromagnetic Scintillation. I. Geometrical Optics (Cambridge U. Press, Cambridge, UK, 2001).
  35. M. E. Gracheva, A. Gurvich, C. C. Kashkarov, V. V. Pokasov, “Scaling relationships and their experimental verification under strong intensity scintillations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, Berlin, 1979).
  36. P. DuChateau, D. Zachmann, Applied Partial Differential Equations (Dover, Mineola, N.Y., 2002).
  37. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  38. N. Ageorges, C. Dainty, eds., Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  39. M. C. Roggemann, A. C. Koivunen, “Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction,” J. Opt. Soc. Am. A 17, 53–62 (2000). [CrossRef]
  40. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  41. V. Aksenov, V. Banakh, O. Tikhomirova, “Potential and vortex features of optical speckle fields and visualization of wave-front singularities,” Appl. Opt. 37, 4536–4540 (1998). [CrossRef]
  42. E. O. LeBigot, W. J. Wild, “Theory of branch-point detection and its implementation,” J. Opt. Soc. Am. A 16, 1724–1729 (1999). [CrossRef]
  43. Feature issue, R. Benedict, J. Breckinridge, D. Fried, eds., “Atmospheric-Compensation Technology,” J. Opt. Soc. Am. A 11 (1994).
  44. M. A. Vorontsov, G. W. Carhart, “Adaptive phase distortion correction in strong speckle-modulation conditions,” Opt. Lett. 27, 2155–2157 (2002). [CrossRef]
  45. A. A. Vasil’ev, M. A. Vorontsov, I. A. Kudryashov, V. I. Shmalhauzen, “Adaptive focusing of radiation on a diffusely scattering reflector under nonlinear refraction conditions,” Sov. J. Quantum Electron. 17, 1106–1107 (1987). [CrossRef]
  46. B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, T. L. Pennington, “Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor,” Appl. Opt. 34, 4186–4195 (1995). [CrossRef] [PubMed]
  47. K. W. Billman, “Multi-beam illuminator laser,” U.S. patent5,734,504 (1998).
  48. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap. 4.
  49. J. Hammond, “Scintillation smoothing of pulsed laser beams,” (1984).
  50. R. B. Holmes, “Mean and variance of energy reflected from a diffuse object illuminated by radiation with partial temporal coherence,” J. Opt. Soc. Am. A 20, 1194–1200 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited