OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 190–198

Reflection and refraction of multipole radiation by an interface

Henk F. Arnoldus  »View Author Affiliations

JOSA A, Vol. 22, Issue 1, pp. 190-198 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflection and refraction of electromagnetic multipole radiation by an interface is studied. The multipole can be electric or magnetic and is of arbitrary order (dipole, quadrupole). From the angular spectrum representation of the radiation emitted by the multipole, I have obtained the angular spectrum representations of the reflected and transmitted fields, which involve the Fresnel reflection and transmission coefficients. The intensity distribution in the far field is evaluated with the method of stationary phase. The result is very simple in appearance and can be expressed in terms of two auxiliary functions of a complex variable. By exchanging the Fresnel coefficients for s and p polarization, the result for an electric multipole can be obtained from the result for a magnetic multipole.

© 2005 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: May 1, 2004
Revised Manuscript: July 22, 2004
Published: January 1, 2005

Henk F. Arnoldus, "Reflection and refraction of multipole radiation by an interface," J. Opt. Soc. Am. A 22, 190-198 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974). [CrossRef]
  2. R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 39, 1–65 (1978).
  3. G. W. Ford, W. H. Weber, “Electromagnetic effects on a molecule at a metal surface,” Surf. Sci. 109, 451–481 (1981). [CrossRef]
  4. P. Goy, J. M. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983). [CrossRef]
  5. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  6. R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137–2140 (1985). [CrossRef] [PubMed]
  7. W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, S. Haroche, “Suppression of spontaneous decay at optical frequencies: test of vacuum-field anisotropy in confined space,” Phys. Rev. Lett. 58, 666–669 (1987). [CrossRef] [PubMed]
  8. D. J. Heinzen, J. J. Childs, J. E. Thomas, M. S. Feld, “Enhanced and inhibited visible spontaneous emissions by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987). [CrossRef] [PubMed]
  9. G. S. Agarwal, “Coherence in spontaneous emission in the presence of a dielectric,” Phys. Rev. Lett. 32, 703–706 (1974). [CrossRef]
  10. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977). [CrossRef]
  11. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980). [CrossRef]
  12. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]
  13. H. F. Arnoldus, J. T. Foley, “Transmission of dipole ra- diation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21, 1109–1117 (2004). [CrossRef]
  14. B. Hecht, “Forbidden light scanning near-field optical microscopy,” Ph.D. thesis (University of Basel, Basel, Switzerland, 1996).
  15. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994). [CrossRef]
  16. H. Heinzelmann, B. Hecht, L. Novotny, D. W. Pohl, “Forbidden light scanning near-field optical microscopy,” J. Microsc. 177, 115–118 (1995). [CrossRef]
  17. D. Van Labeke, F. Baida, D. Barchiesi, D. Courjon, “A theoretical model for the inverse scanning tunneling optical microscope (ISTOM),” Opt. Commun. 114, 470–480 (1995). [CrossRef]
  18. G. A. Massey, “Microscopy and pattern generation with scanned evanescent waves,” Appl. Opt. 23, 658–660 (1984). [CrossRef] [PubMed]
  19. J. M. Vigoureux, F. Depasse, C. Girard, “Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves,” Appl. Opt. 31, 3036–3045 (1992). [CrossRef] [PubMed]
  20. D. Van Labeke, D. Barchiesi, F. Baida, “Optical characterization of nanosources used in scanning near-field optical microscopy,” J. Opt. Soc. Am. A 12, 695–703 (1995). [CrossRef]
  21. B. Hecht, D. W. Pohl, H. Heinzelmann, “Tunnel near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds. (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.
  22. B. Hecht, H. Bielefeldt, D. W. Pohl, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84, 5873–5882 (1998). [CrossRef]
  23. H. F. Arnoldus, J. T. Foley, “Spatial separation of the traveling and evanescent parts of dipole radiation,” Opt. Lett. 28, 1299–1301 (2003). [CrossRef] [PubMed]
  24. M. E. Rose, Multipole Fields (Wiley, New York, 1955).
  25. J. M. Eisenberg, W. Greiner, Excitation Mechanisms of the Nucleus (North-Holland, Amsterdam, The Netherlands, 1970), Chap. 3.
  26. M. E. Rose, Elementary Theory of Angular Momentum (Dover, New York, 1995), Chap. 7.
  27. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 441.
  28. A. J. Devaney, E. Wolf, “Multipole expansion and plane wave representations of the electromagnetic field,” J. Math. Phys. 15, 234–244 (1974). [CrossRef]
  29. H. F. Arnoldus, “Angular spectrum representation of the electromagnetic multipole fields,” submitted to J. Math. Phys.
  30. A. Erdélyi, “Zur Theory der Kugelwellen,” Physica (Utrecht) 4, 107–120 (1937). [CrossRef]
  31. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981). [CrossRef]
  32. J. E. Sipe, “New Green function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  33. J. Gasper, G. C. Sherman, J. J. Stamnes, “Reflection and refraction of an arbitrary electromagnetic wave at a plane interface,” J. Opt. Soc. Am. 66, 955–961 (1976). [CrossRef]
  34. G. C. Sherman, J. J. Stamnes, É. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976). [CrossRef]
  35. M. Born, E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, Cambridge, UK, 1999), App. III, p. 890.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited