OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 38–48

Integration, segregation, and binocular combination

Behzad Mansouri, Robert F. Hess, Harriet A. Allen, and Steven C. Dakin  »View Author Affiliations

JOSA A, Vol. 22, Issue 1, pp. 38-48 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The human visual system can accurately judge the mean of a distribution of different orientation samples. We ask whether the site of this integration is before or after the sites of binocular combination and disparity processing. Furthermore, we are interested in whether the efficiency with which local orientation information is integrated depends on the eye of origin. Our results suggest that orientation integration occurs after binocular integration but before disparity coding. We show that the effectiveness of added orientation noise is not only less than expected on signal or noise grounds but also that it depends on the dominance of the eye to which it is presented, suggesting an interocular opponent interaction in which the dominant eye input has higher gain.

© 2005 Optical Society of America

OCIS Codes
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(330.5510) Vision, color, and visual optics : Psychophysics

Original Manuscript: March 1, 2004
Revised Manuscript: June 22, 2004
Published: January 1, 2005

Behzad Mansouri, Harriet A. Allen, Steven C. Dakin, and Robert F. Hess, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Robson, “Receptive fields: neural representation of the spatial and intensive attributes of the visual image,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), pp. 81–112.
  2. R. DeValois, K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988).
  3. F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998). [CrossRef]
  4. H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998). [CrossRef] [PubMed]
  5. O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000). [CrossRef] [PubMed]
  6. R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999). [CrossRef]
  7. R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003). [CrossRef]
  8. S. C. Dakin, “Information limit on the spatial integration of local orientation signals,” J. Opt. Soc. Am. A 18, 1016–1026 (2001). [CrossRef]
  9. H. A. Allen, R. F. Hess, B. Mansouri, S. C. Dakin, “Integration of first- and second-order orientation,” J. Opt. Soc. Am. A 20, 974–986 (2003). [CrossRef]
  10. C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992). [PubMed]
  11. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988). [PubMed]
  12. J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.
  13. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993). [CrossRef] [PubMed]
  14. P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).
  15. R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995). [CrossRef] [PubMed]
  16. F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000). [CrossRef] [PubMed]
  17. J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999). [CrossRef] [PubMed]
  18. O. Rosenbach, “Ueber monokulare Vorherrschaft beim binikularen Sehen,” Munch Med. Wochenschr 30, 1290–1292 (1903).
  19. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433–436 (1997). [CrossRef]
  20. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997). [CrossRef]
  21. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  22. R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981). [CrossRef]
  23. P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997). [CrossRef] [PubMed]
  24. D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).
  25. J. M. Wolf, “Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression,” Perception 15, 413–417 (1986). [CrossRef]
  26. D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977). [CrossRef]
  27. B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000). [PubMed]
  28. O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002). [CrossRef] [PubMed]
  29. J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited