OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2120–2136

Bezold–Brücke effect in normal trichromats and protanopes

David L. Bimler and Galina V. Paramei  »View Author Affiliations

JOSA A, Vol. 22, Issue 10, pp. 2120-2136 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luminance-dependent change in color appearance—the Bezold–Brücke effect—was investigated in protanopes and related to that in normal trichromats. Spectral lights were presented at six luminance levels covering mesopic, low, and high photopic vision—across three log steps from 0.76 to 760 Td . To judge color appearance, a variant of the color-naming method was used with four primary basic color terms and a “White” response. This modification enabled us to examine apparent saturation changes along with the Bezold–Brücke hue shift. Color-naming frequency functions were acquired across ten presentations of each stimulus. Since protanopes name colors idiosyncratically, changes in color appearance cannot be quantified directly from the color-naming functions. To circumvent the difficulty, these functions were transformed into color similarity measures for analysis with multidimensional scaling purported to reconstruct individual color spaces. In these, luminance-dependent shifts in color appearance were represented by means of geometric displacements. We found that for normal trichromats, shifts measured in this way agreed with those derived in our study directly, and with the hue shifts reported in earlier studies. For protanopes, contrary to some models of dichromatic vision, changes in color appearance are significant and indicate superimposed shifts in hue and saturation. The results obtained for normal trichromats, especially for protanopes, imply that nonlinearity in the yellow–blue opponent system is insufficient to explain the Bezold–Brücke effect, given the nature of the saturation shift and the demonstrated divergence between unique hues and invariant hues.

© 2005 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Color Vision

Original Manuscript: October 29, 2004
Revised Manuscript: March 25, 2005
Manuscript Accepted: April 1, 2005
Published: October 1, 2005

David L. Bimler and Galina V. Paramei, "Bezold–Brücke effect in normal trichromats and protanopes," J. Opt. Soc. Am. A 22, 2120-2136 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, (1873);W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, 221–247 (1873). [CrossRef]
  2. M. E. Brücke, “Über einige Empfindungen im Gebiet der Sehnerven,” Sitz. Ber. d. K. K. Akad. d. Wissensch. Math. Nat. Wiss. Classe 77, 39–71 (1878).
  3. D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282–313 (1931).
  4. A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991). [CrossRef]
  5. R. W. G. Hunt, “Hue shifts in unrelated and related colours,” Color Res. Appl. 14, 235–239 (1989). [CrossRef]
  6. R. W. Pridmore, “Bezold–Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colours,” Vision Res. 39, 3873–3891 (1999). [CrossRef]
  7. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975). [CrossRef] [PubMed]
  8. A. Valberg, T. Seim, “On physiological basis of higher colour metrics,” in From Pigments to Perception, A. Valberg and B. Lee, eds. (Plenum, 1991), pp. 425–436. [CrossRef]
  9. A. Valberg, “Unique hues: an old problem for a new generation,” Vision Res. 41, 1645–1657 (2001). [CrossRef] [PubMed]
  10. M. Ayama, T. Nakatsue, P. E. Kaiser, “Constant hue loci of unique and balanced hues at 10, 100, and 1000 td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987). [CrossRef] [PubMed]
  11. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931). [CrossRef]
  12. D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937). [CrossRef]
  13. A. L. Nagy, “Short-flash Bezold–Brücke hue shifts,” Vision Res. 20, 361–368 (1980). [CrossRef]
  14. R. S. Savoie, “Bezold–Brücke effect and visual non-linearity,” J. Opt. Soc. Am. 63, 1253–1261 (1973). [CrossRef] [PubMed]
  15. J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–352 (1975). [CrossRef] [PubMed]
  16. S. Coren, B. Keith, “Bezold–Brücke effect: pigment or neural location?” J. Opt. Soc. Am. 60, 559–562 (1970). [CrossRef] [PubMed]
  17. P. L. Walraven, “On the Bezold–Brücke phenomenon,” J. Opt. Soc. Am. 51, 1113–1116 (1961). [CrossRef] [PubMed]
  18. S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).
  19. U. Stabell, B. Stabell, “Bezold–Brücke phenomenon of the extrafoveal retina,” J. Opt. Soc. Am. 69, 1648–1652 (1979). [CrossRef] [PubMed]
  20. G. H. Jacobs, T. C. Wascher, “Bezold–Brücke shift: Further measurements,” J. Opt. Soc. Am. 57, 1115–1167 (1967). [CrossRef]
  21. R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964). [CrossRef]
  22. I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994). [CrossRef]
  23. J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988). [CrossRef]
  24. R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965). [CrossRef]
  25. K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).
  26. S. M. Luria, “Color name as a function of stimulus intensity and duration,” Am. J. Psychol. 80, 14–27 (1967). [CrossRef] [PubMed]
  27. G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311–317 (1996). [CrossRef]
  28. G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998). [CrossRef]
  29. H. M. O. Scheibner, R. M. Boynton, “Residual red-green discrimination in dichromats,” J. Opt. Soc. Am. 58, 1151–1158 (1968). [CrossRef] [PubMed]
  30. V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973). [CrossRef] [PubMed]
  31. D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978). [PubMed]
  32. R. N. Shepard, J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic, 1966), pp. 561–592.
  33. Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991). [CrossRef]
  34. E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).
  35. E. N. Sokolov, Ch. A. Izmailov, “The conceptual reflex arc: a model of neural processing as developed for colour vision,” in Modern Issues in Perception, H.-G. Geissler, ed. (VEB Deutscher Verlag der Wissenschaft, 1983), pp. 192–216. [CrossRef]
  36. D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004). [CrossRef]
  37. L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).
  38. R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976). [CrossRef] [PubMed]
  39. I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).
  40. R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969). [CrossRef]
  41. J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 28, 1–27 (1964). [CrossRef]
  42. S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998). [CrossRef]
  43. S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000). [CrossRef] [PubMed]
  44. G. V. Paramei, D. Bimler, “Vector coding underlying individual transformations of a color space,” in Vision: The Approach of Biophysics and Neurosciences (Series of Biophysics and Biocybernetics, Vol. 11), C. Musio, ed. (World Scientific, 2001), pp. 429–436. [CrossRef]
  45. R. E. MacLaury, “From brightness to hue: An explanatory model of color-category evolution,” Curr. Anthropol. 33, 137–186 with Discussion (1992). [CrossRef]
  46. C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987). [CrossRef] [PubMed]
  47. M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998). [CrossRef] [PubMed]
  48. L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).
  49. J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991). [CrossRef]
  50. Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984). [CrossRef]
  51. R. G. Kuehni, “Variability in unique hue selection: A surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004). [CrossRef]
  52. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef] [PubMed]
  53. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000). [CrossRef] [PubMed]
  54. K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237–246 (1991). [CrossRef] [PubMed]
  55. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000). [CrossRef] [PubMed]
  56. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000). [CrossRef]
  57. K. A. Jameson, “Why GRUE? An interpoint-distance model analysis of color categories,” Cross.-Cult. Res. 39 (2005; in press).
  58. M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R. E. MacLaury, G. V. Paramei, and D. Dedrick, eds. (to be published).
  59. S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited