OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2154–2168

Variations in normal color vision. IV. Binary hues and hue scaling

Gokhan Malkoc, Paul Kay, and Michael A. Webster  »View Author Affiliations


JOSA A, Vol. 22, Issue 10, pp. 2154-2168 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002154


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used hue cancellation and focal naming to compare individual differences in stimuli selected for unique hues (e.g., pure blue or green) and binary hues (e.g., blue-green). Standard models assume that binary hues depend on the component responses of red–green and blue–yellow processes. However, variance was comparable for unique and binary hues, and settings across categories showed little correlation. Thus, the choices for the binary mixtures are poorly predicted by the unique hue settings. Hue scaling was used to compare individual differences both within and between categories. Ratings for distant stimuli were again independent, while neighboring stimuli covaried and revealed clusters near the poles of the LvsM and SvsLM cardinal axes. While individual differences were large, mean focal choices for red, blue-green, yellow-green, and (to a lesser extent) purple fall near the cardinal axes, such that the cardinal axes roughly delineate the boundaries for blue vs. green and yellow vs. green categories. This suggests a weak tie between the cone-opponent axes and the structure of color appearance.

© 2005 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Color Vision

History
Original Manuscript: February 22, 2005
Manuscript Accepted: May 6, 2005
Published: October 1, 2005

Citation
Gokhan Malkoc, Paul Kay, and Michael A. Webster, "Variations in normal color vision. IV. Binary hues and hue scaling," J. Opt. Soc. Am. A 22, 2154-2168 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-10-2154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 1003–1016.
  2. J. Gordon, I. Abramov, “Color Vision,” in The Blackwell Handbook of Perception, E. B. Goldstein, ed. (Blackwell, 2001), pp. 92–127.
  3. P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988). [PubMed]
  4. M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996). [CrossRef]
  5. B. A. Wandell, Foundations of Vision (Sinauer, 1995).
  6. E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, 1964).
  7. K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981). [CrossRef] [PubMed]
  8. C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966). [CrossRef]
  9. R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001). [CrossRef]
  10. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000). [CrossRef]
  11. B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990). [CrossRef] [PubMed]
  12. D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931). [CrossRef]
  13. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory: I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955). [CrossRef]
  14. I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990). [CrossRef]
  15. R. M. Boynton, J. Gordon, “Bezold-Brucke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965). [CrossRef]
  16. R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997). [CrossRef] [PubMed]
  17. J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994). [CrossRef] [PubMed]
  18. B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, 1969).
  19. P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978). [CrossRef]
  20. P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56. [CrossRef]
  21. P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003). [CrossRef] [PubMed]
  22. M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R. L. MacLaury, G. Paramei, and D. Dedrick, eds. (John Benjamins, to be published).
  23. J. Davidoff, “Language and perceptual categorization,” Trends Cogn. Sci. 5, 382–387 (2001). [CrossRef] [PubMed]
  24. E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003). [CrossRef]
  25. B. Wooten, D. L. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 59–88. [CrossRef]
  26. R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990). [CrossRef] [PubMed]
  27. G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995). [CrossRef] [PubMed]
  28. R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004). [CrossRef]
  29. B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990). [CrossRef] [PubMed]
  30. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).
  31. M. A. Webster, S. M. Webster, S. Bharadwadj, R. Verma, J. Jaikumar, G. Madan, E. Vaithilingam, “Variations in normal color vision. III. Unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002). [CrossRef]
  32. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  33. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998). [CrossRef] [PubMed]
  34. J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).
  35. B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).
  36. J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982). [CrossRef] [PubMed]
  37. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002). [CrossRef] [PubMed]
  38. J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996). [CrossRef]
  39. J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977). [CrossRef] [PubMed]
  40. M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000). [CrossRef] [PubMed]
  41. S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996). [CrossRef] [PubMed]
  42. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  43. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  44. M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001). [CrossRef]
  45. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000). [CrossRef]
  46. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982). [CrossRef] [PubMed]
  47. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994). [CrossRef] [PubMed]
  48. V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).
  49. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000). [CrossRef] [PubMed]
  50. I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef] [PubMed]
  51. E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999). [CrossRef]
  52. R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993). [CrossRef] [PubMed]
  53. K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998). [CrossRef]
  54. V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996). [CrossRef] [PubMed]
  55. S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).
  56. G. Derefeldt, “Colour appearance systems,” in The Perception of Colour, P. Gouras, ed. (MacMillan, 1991).
  57. M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985). [CrossRef] [PubMed]
  58. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984). [CrossRef]
  59. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974). [CrossRef] [PubMed]
  60. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975). [CrossRef] [PubMed]
  61. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef] [PubMed]
  62. D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, 1951), pp. 811–867.
  63. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef] [PubMed]
  64. S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991). [CrossRef] [PubMed]
  65. K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003). [CrossRef] [PubMed]
  66. P. Lennie, “Color coding in the cortex,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 235–247.
  67. H.-C. Lee, “A computational model for opponent color encoding,” in Advance Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science & Technology, 1990), pp. 178–181.
  68. G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. Cambridge Philos. Soc. 68, 413–471 (1993). [CrossRef] [PubMed]
  69. S. Polyak, The Vertebrate Visual System (University of Chicago Press, 1957).
  70. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited