OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2169–2181

Integration of differing chromaticities in early and midlevel spatial vision

J. Anthony Wilson and Eugene Switkes  »View Author Affiliations


JOSA A, Vol. 22, Issue 10, pp. 2169-2181 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002169


View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using Glass patterns composed of isoluminant dots we have investigated the segregation and integration of chromatic information by the visual system. By measuring pattern detection when the chromaticities of the two elements forming a dot pair are varied (intradipole variation), we characterize integration at an early level of spatial processing. By measuring pattern detection for dot pairs where the within-pair chromaticity is the same but the among-pair chromaticities are varied (interdipole variation) we characterize integration and segregation for a more global, midlevel, spatial processing mechanism. Using isoluminant patterns in which all dots have the same chromaticity, we find that (i) detection thresholds are similar to those for luminance-defined dots, and (ii) an equivalent-contrast metric approximately equates thresholds for various chromaticities, including those along both the cardinal and the intermediate axes of an opponent-color space. When intradipole chromaticity is varied we observe that (i) the ability of visual mechanisms to extract oriented dot pairs decreases with increasing chromaticity differences, and (ii) average bandwidths are similar for cardinal and intermediate directions. For pattern detection with interdipole chromatic variation the visual system does not segregate noise dot pairs from correlated dot pairs on the basis of chromatic differences alone, and appears to integrate oriented dot pairs of differing chromaticities in forming a global percept, even for large color differences. Isoluminant Glass patterns with translational and concentric correlations give similar results. The results are compared with those obtained for contrast variation in luminance-defined Glass Patterns and are discussed in terms of current multistage models of color processing by the visual system.

© 2005 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition

ToC Category:
Spatial-chromatic Interactions

History
Original Manuscript: January 31, 2005
Revised Manuscript: April 22, 2005
Manuscript Accepted: April 24, 2005
Published: October 1, 2005

Citation
J. Anthony Wilson and Eugene Switkes, "Integration of differing chromaticities in early and midlevel spatial vision," J. Opt. Soc. Am. A 22, 2169-2181 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-10-2169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Glass, “Moiré effect from random dots,” Nature 223, 578–580 (1969). [CrossRef] [PubMed]
  2. L. Glass, R. Pérez, “Perception of random dot interference patterns,” Nature 246, 360–362 (1973). [CrossRef] [PubMed]
  3. L. Glass, E. Switkes, “Pattern recognition in humans: correlations which cannot be perceived,” Perception 5, 67–72 (1976). [CrossRef] [PubMed]
  4. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef] [PubMed]
  5. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef] [PubMed]
  6. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986). [CrossRef] [PubMed]
  7. P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988). [PubMed]
  8. A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988). [CrossRef] [PubMed]
  9. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,” J. Opt. Soc. Am. 73, 11–18 (1983). [CrossRef] [PubMed]
  10. P. Flanagan, P. Cavanagh, O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vision Res. 30, 769–778 (1990). [CrossRef] [PubMed]
  11. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988). [CrossRef] [PubMed]
  12. R. L.P. Vimal, “Orientation tuning of the spatial-frequency-tuned mechanisms of the Red–Green channel,” J. Opt. Soc. Am. A 14, 2622–2632 (1997). [CrossRef]
  13. R. L.P. Vimal, “Color-luminance interaction: data produced by oblique cross masking,” J. Opt. Soc. Am. A 15, 1756–1766 (1998). [CrossRef]
  14. R. L.P. Vimal, “Spatial-frequency tuning of sustained nonoriented units of the red–green channel,” J. Opt. Soc. Am. A 15, 1–15 (1998). [CrossRef]
  15. M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990). [CrossRef] [PubMed]
  16. S. M. Wuerger, M. J. Morgan, “Input of long- and middle-wavelength-sensitive cones to orientation discrimination,” J. Opt. Soc. Am. A 16, 436–442 (1999). [CrossRef]
  17. T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998). [CrossRef] [PubMed]
  18. K. T. Mullen, M. A. Losada, “The spatial tuning of color and luminance peripheral vision measured with notch filtered noise masking,” Vision Res. 39, 721–731 (1999). [CrossRef] [PubMed]
  19. K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994). [CrossRef]
  20. E. N. Johnson, M. J. Hawken, R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409–416 (2001). [CrossRef] [PubMed]
  21. R. Shapley, M. Hawken, “Neural mechanisms for color perception in the primary visual cortex,” Curr. Opin. Neurobiol. 12, 426–432 (2002). [CrossRef] [PubMed]
  22. E. N. Johnson, M. J. Hawken, R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004). [CrossRef] [PubMed]
  23. H. S. Friedman, H. Zhou, R. von der Heydt, “The coding of uniform colour figures in monkey visual cortex,” J. Physiol. (London) 548(Pt 2), 593–613 (2003). [CrossRef]
  24. S. G. Solomon, J. W. Peirce, P. Lennie, “The impact of suppressive surrounds on chromatic properties of cortical neurons,” J. Neurosci. 24, 148–160 (2004). [CrossRef] [PubMed]
  25. K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997). [CrossRef] [PubMed]
  26. K. T. Mullen, M. J. Sankeralli, “Evidence for the stochastic independence of the blue–yellow, red–green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999). [CrossRef] [PubMed]
  27. J. A. Garcia, J. L. Nieves, E. Valero, J. Romero, “Stochastic independence of color-vision mechanisms confirmed by a subthreshold summation paradigm,” J. Opt. Soc. Am. A 17, 1485–1488 (2000). [CrossRef]
  28. S. Engel, X. Zhang, B. Wandell, “Colour tuning in human visual cortex measured with functional magnetic resonance imaging,” Nature 388, 68–71 (1997). [CrossRef] [PubMed]
  29. M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 333–341 (1994). [CrossRef]
  30. E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, 1964).
  31. L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-colors theory. IV. A psychological color specification system,” J. Opt. Soc. Am. 46, 416–421 (1956). [CrossRef] [PubMed]
  32. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000). [CrossRef] [PubMed]
  33. R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997). [CrossRef] [PubMed]
  34. M. J. Sankeralli, K. T. Mullen, “Bipolar or rectified chromatic detection mechanisms?” Visual Neurosci. 18, 127–135 (2001). [CrossRef]
  35. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000). [CrossRef] [PubMed]
  36. T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003). [CrossRef] [PubMed]
  37. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  38. P. Lennie, “Color coding in cortex,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 235–247.
  39. D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997). [CrossRef]
  40. M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995). [CrossRef] [PubMed]
  41. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994). [CrossRef] [PubMed]
  42. T. M. Caelli, “Some psychophysical determinants of discrete Moire patterns,” Biol. Cybern. 39, 97–103 (1981). [CrossRef]
  43. K. A. Stevens, “Computation of Locally Parallel Structure,” Biol. Cybern. 29, 19–28 (1978). [CrossRef]
  44. R. K. Maloney, G. J. Mitchison, H. B. Barlow, “Limit to the detection of Glass patterns in the presence of noise,” J. Opt. Soc. Am. A 4, 2336–2341 (1987). [CrossRef] [PubMed]
  45. H. B. Barlow, B. A. Olshausen, “Convergent evidence for the visual analysis of optic flow through anisotropic attenuation of high spatial frequencies,” J. Vision 4, 415–426 (2004). [CrossRef]
  46. H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998). [CrossRef] [PubMed]
  47. J. A. Wilson, E. Switkes, R. L. De Valois, “Glass pattern studies of local and global processing of contrast variations,” Vision Res. 44, 2629–2641 (2004). [CrossRef] [PubMed]
  48. D. R. Badcock, C. W. Clifford, S. K. Khuu, “Interactions between luminance and contrast signals in global form detection,” Vision Res. 45, 881–889 (2005). [CrossRef] [PubMed]
  49. K. T. Mullen, W. H. Beaudot, “Comparison of color and luminance vision on a global shape discrimination task,” Vision Res. 42, 565–575 (2002). [CrossRef] [PubMed]
  50. H. R. Wilson, F. Wilkinson, W. Asaad, “Rapid communication: concentric orientation summation in human form vision,” Vision Res. 37, 2325–2330 (1997). [CrossRef] [PubMed]
  51. K. T. Mullen, W. H.A. Beaudot, W. H. McIlhagga, “Contour integration in color vision: A common process for the blue–yellow, red–green and luminance mechanisms?” Vision Res. 40, 639–655 (2000). [CrossRef]
  52. W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996). [CrossRef] [PubMed]
  53. R. L. De Valois, K. K. De Valois, Spatial Vision, Oxford Psychology Series (Oxford U. Press, 1988).
  54. L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984). [CrossRef] [PubMed]
  55. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  56. D. I. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  57. J. Rabin, E. Switkes, M. Crognale, M. E. Schneck, A. J. Adams, “Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing,” Vision Res. 34, 2657–2671 (1994). [CrossRef] [PubMed]
  58. T. Carney, M. Shadlen, E. Switkes, “Parallel processing of motion and colour information,” Nature 328, 647–649 (1987). [CrossRef] [PubMed]
  59. S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Color Vision: Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.
  60. E. Switkes, M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vision Res. 39, 1823–1831 (1999). [CrossRef] [PubMed]
  61. W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997). [CrossRef]
  62. J. A. Wilson, “Spatiochromatic interactions in the processing of form,” Master’s thesis (University of California, Berkeley, 1999).
  63. J. A. Wilson, E. Switkes, R. L. De Valois, “Form perception across chromaticities in Glass patterns,” Invest. Ophthalmol. Visual Sci. 40, S355 (1999).
  64. D. J. Finney, Probit Analysis, 3rd ed. (Cambridge U. Press, 1971).
  65. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989). [CrossRef] [PubMed]
  66. J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990). [CrossRef] [PubMed]
  67. L. V. Scharff, W. S. Geisler, “Stereopsis at isoluminance in the absence of chromatic aberrations,” J. Opt. Soc. Am. A 9, 868–876 (1992). [CrossRef] [PubMed]
  68. S. C. Dakin, P. J. Bex, “Local and global visual grouping: tuning for spatial frequency and contrast,” J. Vision 1, 99–111 (2001). [CrossRef]
  69. J. A. Wilson, E. Switkes, R. L. De Valois, “Effects of contrast variations on the perception of glass patterns,” J. Vision 1, 152a (2001). [CrossRef]
  70. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987). [PubMed]
  71. M. A. Smith, W. Bair, J. A. Movshon, “Signals in macaque striate cortical neurons that support the perception of glass patterns,” J. Neurosci. 22, 8334–8345 (2002). [PubMed]
  72. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001). [PubMed]
  73. L. E. Mahon, R. L. De Valois, “Cartesian and non-Cartesian responses in LGN, V1, and V2 cells,” Visual Neurosci. 18, 973–981 (2001).
  74. J. L. Gallant, J. Braun, D. C. Van Essen, “Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex,” Science 259, 100–103 (1993). [CrossRef] [PubMed]
  75. J. L. Gallant, C. E. Connor, S. Rakshit, J. W. Lewis, D. C. Van Essen, “Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey,” J. Neurophysiol. 76, 2718–2739 (1996). [PubMed]
  76. M. A. Webster, J. A. Wilson, J. D. Mollon, “Adaptation to natural color distributions,” Invest. Ophthalmol. Visual Sci. 37, S648 (1996).
  77. J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996). [CrossRef] [PubMed]
  78. F. L. Kooi, K. K. De Valois, E. Switkes, D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992). [CrossRef] [PubMed]
  79. A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997). [CrossRef] [PubMed]
  80. I. Kovacs, B. Julesz, “Depth, motion, and static-flow perception at metaisoluminant color contrast,” Proc. Natl. Acad. Sci. U.S.A. 89, 10390–10394 (1992). [CrossRef] [PubMed]
  81. D. C. Kiper, M.-J. Mandelli, K. S. Cardinal, “Chromatic selectivity of the mechanisms underlying object detection and color categorization [abstract],” J. Vision 3, 709a (2003). [CrossRef]
  82. C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vision 3, 106–115 (2003). [CrossRef]
  83. K. S. Cardinal, D. C. Kiper, “The detection of colored Glass patterns,” J. Vision 3, 199–208, http://journalofvision.org/193/193/192/, doi:. (2003). [CrossRef]
  84. P. U. Tse, M. A. Smith, M. Augath, T. Trinath, N. K. Logothetis, J. A. Movshon, “Using Glass Patterns and fMRI to identify areas that process global form in macaque visual cortex [abstract],” J. Vision 2, 258a, http://journalofvision.org/2/7/285/, doi:(2002). [CrossRef]
  85. A. Li, P. Lennie, “Importance of color in the segmentation of variegated surfaces,” J. Opt. Soc. Am. A 18, 1240–1251 (2001). [CrossRef]
  86. A. O. Holcombe, P. Cavanagh, “Early binding of feature pairs for visual perception,” Nat. Neurosci. 4, 127–128 (2001). [CrossRef] [PubMed]
  87. C. W. Clifford, A. O. Holcombe, J. Pearson, “Rapid global form binding with loss of associated colors,” J. Vision 4, 1090–1101 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited