OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2230–2238

Contextual effects in fine spatial discriminations

Lynn A. Olzak and Pentti I. Laurinen  »View Author Affiliations


JOSA A, Vol. 22, Issue 10, pp. 2230-2238 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002230


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The context in which a pattern is viewed can greatly affect its apparent contrast, a phenomenon commonly attributed to pooled contrast gain control processes. A low-contrast surround may slightly enhance apparent contrast, whereas increasing the contrast of the surround leads to a monotonic decline in contrast appearance. We ask here how the presence of a patterned surround affects the ability to perform fine, suprathreshold orientation, contrast, and spatial frequency discriminations as a function of surround contrast and phase. Our results revealed an unexpected dip in performance when center and surround were in phase and similar in contrast. These results suggest that additional processes, perhaps those involved in scene segregation, play a role in contextual effects on discrimination.

© 2005 Optical Society of America

OCIS Codes
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Form Perception

History
Original Manuscript: January 7, 2005
Manuscript Accepted: February 24, 2005
Published: October 1, 2005

Citation
Lynn A. Olzak and Pentti I. Laurinen, "Contextual effects in fine spatial discriminations," J. Opt. Soc. Am. A 22, 2230-2238 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-10-2230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–758 (1983). [CrossRef] [PubMed]
  2. D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982). [PubMed]
  3. D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).
  4. D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991). [CrossRef]
  5. D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992). [CrossRef]
  6. J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997). [CrossRef]
  7. R. L. DeValois, K. K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, 1990).
  8. N. v.S. Graham, Visual Pattern Analyzers, Vol. 16 of Oxford Psychology Series (Oxford U. Press, 1989), pp. xvi, 646.
  9. L. A. Olzak, J. P. Thomas, “Seeing spatial patterns,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, and J. Thomas, eds. (Wiley, 1986).
  10. J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995). [CrossRef]
  11. L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991). [CrossRef] [PubMed]
  12. A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989). [CrossRef]
  13. A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991). [CrossRef]
  14. D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981). [PubMed]
  15. D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985). [CrossRef] [PubMed]
  16. G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992). [PubMed]
  17. G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994). [PubMed]
  18. G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999). [PubMed]
  19. E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986). [CrossRef] [PubMed]
  20. E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986). [CrossRef] [PubMed]
  21. J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999). [CrossRef]
  22. M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990). [PubMed]
  23. J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997). [CrossRef] [PubMed]
  24. B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995). [CrossRef] [PubMed]
  25. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987). [PubMed]
  26. Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991). [CrossRef] [PubMed]
  27. D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978). [CrossRef] [PubMed]
  28. G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999). [PubMed]
  29. G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000). [CrossRef]
  30. D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators,” J. Neurophysiol. 70, 1885–1898 (1993). [PubMed]
  31. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991). [CrossRef] [PubMed]
  32. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993). [CrossRef] [PubMed]
  33. M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996). [CrossRef] [PubMed]
  34. M. D’Zmura, B. Singer, “Spatial pooling of contrast in contrast gain control,” J. Opt. Soc. Am. A 13, 2135–2140 (1996). [CrossRef]
  35. Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985). [CrossRef] [PubMed]
  36. L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999). [CrossRef] [PubMed]
  37. J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993). [CrossRef] [PubMed]
  38. Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998). [CrossRef]
  39. A. W. Freeman, D. R. Badcock, “Visual sensitivity in the presence of a patterned background,” J. Opt. Soc. Am. A 16, 979–986 (1999). [CrossRef]
  40. R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998). [CrossRef] [PubMed]
  41. J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000). [CrossRef] [PubMed]
  42. T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002). [CrossRef] [PubMed]
  43. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994). [CrossRef]
  44. J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999). [CrossRef]
  45. U. Polat, “Functional architecture of long-range perceptual interactions,” Spatial Vis. 12, 143–162 (1999). [CrossRef]
  46. U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998). [CrossRef] [PubMed]
  47. U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993). [CrossRef] [PubMed]
  48. U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996). [CrossRef] [PubMed]
  49. I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002). [CrossRef] [PubMed]
  50. I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001). [CrossRef] [PubMed]
  51. I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004). [CrossRef]
  52. J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001). [CrossRef] [PubMed]
  53. L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991). [CrossRef] [PubMed]
  54. L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992). [CrossRef] [PubMed]
  55. L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003). [CrossRef] [PubMed]
  56. J. P. Thomas, L. A. Olzak, “Spatial phase sensitivity of mechanisms mediating discrimination of small orientation differences,” J. Opt. Soc. Am. A 18, 2197–2203 (2001). [CrossRef]
  57. C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001). [CrossRef]
  58. C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003). [CrossRef]
  59. C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000). [CrossRef] [PubMed]
  60. B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001). [CrossRef] [PubMed]
  61. S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990). [CrossRef] [PubMed]
  62. B. G. Smith, J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713–724 (1989). [CrossRef] [PubMed]
  63. A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986). [CrossRef]
  64. J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999). [CrossRef]
  65. L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999). [CrossRef]
  66. C. Chubb, L. Olzak, A. Derrington, “Second-order processes in vision: introduction,” J. Opt. Soc. Am. A 18, 2175–2178 (2001). [CrossRef]
  67. J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited