OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2385–2404

Light diffraction by a three-dimensional object: differential theory

Brian Stout, Michel Nevière, and Evgeny Popov  »View Author Affiliations

JOSA A, Vol. 22, Issue 11, pp. 2385-2404 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The differential theory of diffraction of light by an arbitrary object described in spherical coordinates is developed. Expanding the fields on the basis of vector spherical harmonics, we reduce the Maxwell equations to an infinite first-order differential set. In view of the truncation required for numerical integration, correct factorization rules are derived to express the components of D in terms of the components of E, a process that extends the fast Fourier factorization to the basis of vector spherical harmonics. Numerical overflows and instabilities are avoided through the use of the S-matrix propagation algorithm for carrying out the numerical integration. The method can analyze any shape and/or material, dielectric or conducting. It is particularly simple when applied to rotationally symmetric objects.

© 2005 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(050.1940) Diffraction and gratings : Diffraction
(290.5850) Scattering : Scattering, particles

ToC Category:
Diffraction and Gratings

Original Manuscript: January 31, 2005
Manuscript Accepted: March 22, 2005
Published: November 1, 2005

Brian Stout, Michel Nevière, and Evgeny Popov, "Light diffraction by a three-dimensional object: differential theory," J. Opt. Soc. Am. A 22, 2385-2404 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  2. M. I. Mischenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  3. L. Lorenz, “Lysbevaegelsen i og uden for en af plane Lysbølger belyst Kulge,” Vidensk. Selk. Skr. 6, 1–62 (1890).
  4. L. Lorenz, “Sur la lumière réfléchie et réfractée par une sphère transparente,” Librairie Lehmann et Stage, Oeuvres scientifique de L. Lorenz, revues et annotées par H. Valentiner, 1898(transl. of Ref. [3]).
  5. G. Mie, “Beiträge zur Optik Trüber Medien speziell kolloidaler Metallosungen,” Ann. Phys. 25, 377–452 (1908). [CrossRef]
  6. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  7. L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications (Wiley, 2000). [CrossRef]
  8. L. Tsang, J. A. Kong, K.-H. Ding, C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).
  9. L. Tsang, J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics (Wiley, 2001).
  10. In the community of grating theoreticians, as well as in the one of waveguides, this matrix is called the S matrix or scattering matrix. It is essentially the S12 block of the S(M−1) matrix appearing later on in Eq. (158); see also Eqs. (163, 165).
  11. W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves (IEEE, 1994).
  12. P. C. Waterman, “Matrix methods in potential theory and electromagnetic scattering,” J. Appl. Phys. 50, 4550–4566 (1979). [CrossRef]
  13. M. Bagieu, D. Maystre, “Waterman and Rayleigh methods for diffraction grating problems: extension of the convergence domain,” J. Opt. Soc. Am. A 15, 1566–1576 (1998). [CrossRef]
  14. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  15. E. Popov, M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  16. E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001). [CrossRef]
  17. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  18. E. Popov, M. Nevière, N. Bonod, “Factorization of products of discontinuous functions applied to Fourier–Bessel basis,” J. Opt. Soc. Am. A 21, 46–51 (2004). [CrossRef]
  19. N. Bonod, E. Popov, M. Neviere, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005). [CrossRef]
  20. M. Nevière, E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, 2003).
  21. C. Cohen-Tannoudji, Photons & Atomes—Introduction à l’électrodynamique quantique (InterEdition/ Editions du CNRS, 1987).
  22. J. D. Jackson, Classical Electrodynamics (Wiley, 1965).
  23. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, 1960).
  24. B. Stout, J.-C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).
  25. B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002). [CrossRef]
  26. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  27. D. W. Mackowski, M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996). [CrossRef]
  28. J. A. Gaunt, “On the triplets of Helium,” Philos. Trans. R. Soc. London, Ser. A 228, 151–196 (1929). [CrossRef]
  29. Y. L. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited