## Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs

JOSA A, Vol. 22, Issue 11, pp. 2405-2418 (2005)

http://dx.doi.org/10.1364/JOSAA.22.002405

Enhanced HTML Acrobat PDF (777 KB)

### Abstract

A fast coupled-integral-equation (CIE) technique is developed to compute the plane-TE-wave scattering by a wide class of periodic 2D inhomogeneous structures with curvilinear boundaries, which includes finite-thickness relief and rod gratings made of homogeneous material as special cases. The CIEs in the spectral domain are derived from the standard volume electric field integral equation. The kernel of the CIEs is of Picard type and offers therefore the possibility of deriving recursions, which allow the computation of the convolution integrals occurring in the CIEs with linear amounts of arithmetic complexity and memory. To utilize this advantage, the CIEs are solved iteratively. We apply the biconjugate gradient stabilized method. To make the iterative solution process faster, an efficient preconditioning operator (PO) is proposed that is based on a formal analytical inversion of the CIEs. The application of the PO also takes only linear complexity and memory. Numerical studies are carried out to demonstrate the potential and flexibility of the CIE technique proposed. Though the best efficiency and accuracy are observed at either low permittivity contrast or high conductivity, the technique can be used in a wide range of variation of material parameters of the structures including when they contain components made of both dielectrics with high permittivity and typical metals.

© 2005 Optical Society of America

**OCIS Codes**

(000.3860) General : Mathematical methods in physics

(050.1950) Diffraction and gratings : Diffraction gratings

(050.1970) Diffraction and gratings : Diffractive optics

(050.2770) Diffraction and gratings : Gratings

(260.2110) Physical optics : Electromagnetic optics

**ToC Category:**

Diffraction and Gratings

**History**

Original Manuscript: January 18, 2005

Manuscript Accepted: March 18, 2005

Published: November 1, 2005

**Citation**

Thore Magath and Andriy E. Serebryannikov, "Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs," J. Opt. Soc. Am. A **22**, 2405-2418 (2005)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-11-2405

Sort: Year | Journal | Reset

### References

- E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001). [CrossRef]
- E. Popov, M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
- K. Watanabe, R. Petit, M. Nevière, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002). [CrossRef]
- K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002). [CrossRef]
- E. N. Glytsis, T. K. Gaylord, “Three-dimentional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1394–1415 (1990). [CrossRef]
- M. G. Moharam, E. B. Grann, D. Q. Pommet, “Formulation of stable and efficient inplementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
- M. G. Moharam, D. Q. Pommet, E. B. Grann, T. K. Gaylord, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
- S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997). [CrossRef]
- E. Popov, B. Chernov, M. Nevière, N. Bonod, “Differential theory: Application to highly conducting gratings,” J. Opt. Soc. Am. A 21, 199–206 (2004). [CrossRef]
- D. M. Pai, K. A. Awada, “Analysis of dielectric gratings of arbitrary profiles and thicknesses,” J. Opt. Soc. Am. A 8, 755–762 (1991). [CrossRef]
- K. Matsumoto, K. Rokushima, “Three-dimensional rigorous analysis of dielectric grating waveguides for general cases of oblique propagation,” J. Opt. Soc. Am. A 10, 269–276 (1993). [CrossRef]
- M. Jiang, T. Tamir, S. Zhang, “Modal theory of diffraction by multilayered gratings containing dielectric and metallic components,” J. Opt. Soc. Am. A 18, 807–820 (2001). [CrossRef]
- T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14, 914–927 (1996). [CrossRef]
- L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
- L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). [CrossRef]
- L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
- T. Vallius, “Comparing the Fourier modal method with the C method: analysis of conducting multilevel gratings in TM polarization,” J. Opt. Soc. Am. A 19, 1555–1562 (2002). [CrossRef]
- P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
- J. P. Donnelly, S. D. Lau, “Generalized effective index series solution analysis of waveguide structures with positionally varying refractive index profiles,” IEEE J. Quantum Electron. 32, 1070–1079 (1996). [CrossRef]
- F. Bilotti, A. Toscano, L. Vegni, “Design of inhomogeneous slabs for filtering applications via closed form solutions of the reflection coefficient,” J. Electromagn. Waves Appl. 16, 1233–1254 (2002). [CrossRef]
- S. Menon, Q. Su, R. Grobe, “Iterative approach to Maxwell equations for dielectric media of spatially varying refractive index,” Phys. Rev. E 67, 046619 (2003). [CrossRef]
- T. J. Cui, C. H. Liang, “Nonlinear differential equation for the reflection coefficient of an inhomogeneous lossy medium and its inverse scattering solutions,” IEEE Trans. Antennas Propag. 42, 621–626 (1994). [CrossRef]
- J. Xia, A. K. Jordan, J. A. Kong, “Electromagnetic inverse-scattering theory for inhomogeneous dielectrics: the local reflection model,” J. Opt. Soc. Am. A 11, 1081–1086 (1994). [CrossRef]
- D.-Y. Jeong, Y. H. Ye, Q. M. Jang, “Effective optical properties associated with wave propagation in photonic crystals of finite length along the propagation direction,” J. Appl. Phys. 92, 4194–4200 (2002). [CrossRef]
- M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995). [CrossRef]
- M. Qiu, S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000). [CrossRef]
- F. Gadot, A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, E. Akmansoy, “High-transmission defect modes in two-dimensional metallic photonic crystals,” J. Appl. Phys. 85, 8499–8501 (1999). [CrossRef]
- E. Moreno, D. Erni, C. Hafner, “Band structure computations of metallic photonic crystals with the multiple mutipole method,” Phys. Rev. B 65, 155120 (2002). [CrossRef]
- M. Qiu, S. He, “Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap,” J. Opt. Soc. Am. B 17, 1027–1030 (2000). [CrossRef]
- L. Shen, S. He, “Analysis for the convergence problem of the plane-wave expansion method for photonic crystals,” J. Opt. Soc. Am. A 19, 1021–1024 (2002). [CrossRef]
- K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001). [CrossRef]
- D. Maystre, “Integral Methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), Chap. 3. [CrossRef]
- A. F. Peterson, S. L. Ray, R. Mittra, Computational Methods for Electromagnetics (IEEE Press, 1998).
- Z. Q. Zhang, Q. H. Liu, “A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects,” IEEE Antennas Wireless Propag. Lett. 1, 102–105 (2002). [CrossRef]
- H. Van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 13, 631–644 (1992). [CrossRef]
- S. H. Wei, Y. Y. Lu, “Application of Bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon. Technol. Lett. 14, 645–647 (2002). [CrossRef]
- T. Magath, “Rapid solution of Fredholm integral equations of the second kind with Picard-kernel,” IEICE Trans. Electron. E87-C, 1548–1549 (2004).
- H. M. Srivastava, R. G. Buschman, Theory and Applications for Convolution Integral Equations (Kluwer Academic, 1992). [CrossRef]
- K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge U. Press, 1997). [CrossRef]
- G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).
- N. A. Nicorovici, R. C. McPhedran, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E 52, 1135–1145 (1995). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
Fig. 14 |
Fig. 15 |

Fig. 16 |
Fig. 17 |
Fig. 18 |

« Previous Article | Next Article »

OSA is a member of CrossRef.